日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (1)若{an}是等差數(shù)列,首項(xiàng)a1>0,a2005+a2006>0,a2005•a2006<0,則使前n項(xiàng)和Sn>0成立的最大正整數(shù)n是 ________
          (2)已知一個(gè)等比數(shù)列的首項(xiàng)為1,項(xiàng)數(shù)是偶數(shù),其奇數(shù)項(xiàng)之和為85,偶數(shù)項(xiàng)和為170,則這個(gè)數(shù)列的公比等于 ________,項(xiàng)數(shù)等于 ________

          解:(1)∵a2005•a2006<0,
          ∴a2005和a2006異號(hào)
          ∵a1>0,a2005+a2006>0,
          ∴a2005>0,a2006<0,
          ∵Sn=>0
          ∴a1+an>0
          ∴a2005+a2006>0
          ∵a1+a4010=a2005+a2006,
          ∴a1+a4010>0
          ∴n最大為:4010
          故答案為:4010
          (2)∵q===2,
          ∴數(shù)列的前n項(xiàng)的和S==85+170=255
          求得n=8
          故答案為:2,8
          分析:(1)根據(jù)a2005•a2006<0判斷出a2005和a2006異號(hào),進(jìn)而根據(jù)a2005+a2006>0,推斷出a2005>0,a2006<0,進(jìn)而利用等差數(shù)列求得公式以及等差中項(xiàng)的性質(zhì)可知a1+a4010=a2005+a2006,根據(jù)a2005+a2006>0,判斷出a1+a4010>0,進(jìn)而求得n的值.
          (2)先根據(jù)偶數(shù)項(xiàng)之和與奇數(shù)項(xiàng)之和的比為數(shù)列的公比,求得數(shù)列的公比,進(jìn)而根據(jù)等比數(shù)列的求和公式,利用前n項(xiàng)的和求得項(xiàng)數(shù)n.
          點(diǎn)評(píng):本題主要考查了等比數(shù)列的性質(zhì),通項(xiàng)公式和前n項(xiàng)和的應(yīng)用.考查了學(xué)生綜合運(yùn)用等比數(shù)列基礎(chǔ)知識(shí)的能力.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          在數(shù)列{an}中,若an2-an-12=p(n≥2,n∈N×,p為常數(shù)),則稱{an}為“等方差數(shù)列”,下列是對(duì)“等方差數(shù)列”的判斷;
          ①若{an}是等方差數(shù)列,則{an2}是等差數(shù)列;
          ②{(-1)n}是等方差數(shù)列;
          ③若{an}是等方差數(shù)列,則{akn}(k∈N*,k為常數(shù))也是等方差數(shù)列;
          ④若{an}既是等方差數(shù)列,又是等差數(shù)列,則該數(shù)列為常數(shù)列.
          其中正確命題序號(hào)為
           
          .(將所有正確的命題序號(hào)填在橫線上)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          在數(shù)列{an}中,若an2-an-12=p(n≥2,n∈N*,p為常數(shù)),則稱{an}為“等方差數(shù)列”,下列是對(duì)“等方差數(shù)列”的判斷;
          ①若{an}是等方差數(shù)列,則{an2}是等差數(shù)列;
          ②{(-1)n}是等方差數(shù)列;
          ③若{an}是等方差數(shù)列,則{akn}(k∈N*,k為常數(shù))也是等方差數(shù)列;
          ④若{an}既是等方差數(shù)列,又是等差數(shù)列,則該數(shù)列為常數(shù)列.
          其中正確命題序號(hào)為(  )
          A、①②③B、①②④C、①②③④D、②③④

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          在數(shù)列{an}中,若an2-an-12=p(n≥2,n∈N*,p為常數(shù)),則{an}稱為“等方差數(shù)列”,下列是對(duì)“等方差數(shù)列”的判斷:
          ①若{an}為等方差數(shù)列,則{an2}是等差數(shù)列;
          ②{(-1)n}是等方差數(shù)列;
          ③若{an}是等方差數(shù)列,則{akn}(k∈N*,k為常數(shù))也是等方差數(shù)列.
          其中正確命題序號(hào)為
          ①②③
          ①②③

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2009•湖北模擬)給出定義:在數(shù)列{an}中,都有
          a
          2
          n
          -
          a
          2
          n-1
          =p(n≥2,n∈N*)
          ( p為常數(shù)),則稱{an}為“等方差數(shù)列”.下列是對(duì)“等方差數(shù)列”的判斷:
          (1)數(shù)列{an}是等方差數(shù)列,則數(shù)列{
          a
          2
          n
          }
          是等差數(shù)列;
          (2)數(shù)列{(-1)n}是等方差數(shù)列;
          (3)若數(shù)列{an}既是等方差數(shù)列,又是等差數(shù)列,則該數(shù)列必為常數(shù)數(shù)列;
          (4)若數(shù)列{an}是等方差數(shù)列,則數(shù)列{akn}(k∈N*,k為常數(shù))也是等方差數(shù)列.
          其中正確命題序號(hào)為
          (1)(2)(3)(4)
          (1)(2)(3)(4)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2009年湖北省八市高三三月調(diào)考數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

          給出定義:在數(shù)列{an}中,都有( p為常數(shù)),則稱{an}為“等方差數(shù)列”.下列是對(duì)“等方差數(shù)列”的判斷:
          (1)數(shù)列{an}是等方差數(shù)列,則數(shù)列是等差數(shù)列;
          (2)數(shù)列{(-1)n}是等方差數(shù)列;
          (3)若數(shù)列{an}既是等方差數(shù)列,又是等差數(shù)列,則該數(shù)列必為常數(shù)數(shù)列;
          (4)若數(shù)列{an}是等方差數(shù)列,則數(shù)列{akn}( k∈N*,k為常數(shù))也是等方差數(shù)列.
          其中正確命題序號(hào)為   

          查看答案和解析>>

          同步練習(xí)冊(cè)答案