日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在數(shù)列{an}中,若an2-an-12=p(n≥2,n∈N×,p為常數(shù)),則稱(chēng){an}為“等方差數(shù)列”,下列是對(duì)“等方差數(shù)列”的判斷;
          ①若{an}是等方差數(shù)列,則{an2}是等差數(shù)列;
          ②{(-1)n}是等方差數(shù)列;
          ③若{an}是等方差數(shù)列,則{akn}(k∈N*,k為常數(shù))也是等方差數(shù)列;
          ④若{an}既是等方差數(shù)列,又是等差數(shù)列,則該數(shù)列為常數(shù)列.
          其中正確命題序號(hào)為
           
          .(將所有正確的命題序號(hào)填在橫線上)
          分析:根據(jù)等差數(shù)列的性質(zhì)及題中的等方差數(shù)列的新定義,即可判斷出正確的答案.
          解答:解:①因?yàn)閧an}是等方差數(shù)列,所以an2-an-12=p(n≥2,n∈N×,p為常數(shù))成立,
          得到{an2}為首項(xiàng)是a12,公差為p的等差數(shù)列;
          ②因?yàn)閍n2-an-12=(-1)2n-(-1)2n-1=1-(-1)=2,所以數(shù)列{(-1)n}是等方差數(shù)列;
          ③數(shù)列{an}中的項(xiàng)列舉出來(lái)是:a1,a2,…,ak,ak+1,ak+2,…,a2k,…,a3k,…
          數(shù)列{akn}中的項(xiàng)列舉出來(lái)是:ak,a2k,a3k,…
          因?yàn)閍k+12-ak2=ak+22-ak+12=ak+32-ak+22=…=a2k2-ak2=p
          所以(ak+12-ak2)+(ak+22-ak+12)+(ak+32-ak+22)+…+(a2k2-a2k-12)=a2k2-ak2=kp,
          類(lèi)似地有akn2-akn-12=akn-12-akn-22=…=akn+32-akn+22=akn+22-akn+12=akn+12-akn2=p
          同上連加可得akn+12-akn2=kp,所以,數(shù)列{akn}是等方差數(shù)列;
          ④{an}既是等方差數(shù)列,又是等差數(shù)列,所以an2-an-12=p,且an-an-1=d(d≠0),所以an+an-1=
          p
          d
          ,聯(lián)立解得an=
          d
          2
          +
          p
          2d
          ,
          所以{an}為常數(shù)列,當(dāng)d=0時(shí),顯然{an}為常數(shù)列,所以該數(shù)列為常數(shù)列.
          綜上,正確答案的序號(hào)為:①②③④
          故答案為:①②③④
          點(diǎn)評(píng):此題考查學(xué)生靈活運(yùn)用等差數(shù)列的性質(zhì)及新定義等方差數(shù)列化簡(jiǎn)求值,是一道中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          在數(shù)列{an}中,若a1=
          1
          2
          an=
          1
          1-an-1
          (n≥2,n∈N*),則a2010等于
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          在數(shù)列{an}中,若an2-an-12=p(n≥2,n∈N*,p為常數(shù)),則稱(chēng){an}為“等方差數(shù)列”,下列是對(duì)“等方差數(shù)列”的判斷;
          ①若{an}是等方差數(shù)列,則{an2}是等差數(shù)列;
          ②{(-1)n}是等方差數(shù)列;
          ③若{an}是等方差數(shù)列,則{akn}(k∈N*,k為常數(shù))也是等方差數(shù)列;
          ④若{an}既是等方差數(shù)列,又是等差數(shù)列,則該數(shù)列為常數(shù)列.
          其中正確命題序號(hào)為( 。
          A、①②③B、①②④C、①②③④D、②③④

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          在數(shù)列{an}中,若a1=2,an=
          1
          1-an-1
          (n≥2,n∈N*),則a7
          等于(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          在數(shù)列{an}中,若a1=2,a2=6,且當(dāng)n∈N*時(shí),an+2是an•an+1的個(gè)位數(shù)字,則a2011=( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知無(wú)窮數(shù)列{an}具有如下性質(zhì):①a1為正整數(shù);②對(duì)于任意的正整數(shù)n,當(dāng)an為偶數(shù)時(shí),an+1=
          a n
          2
          ;當(dāng)an為奇數(shù)時(shí),an+1=
          an+1
          2
          .在數(shù)列{an}中,若當(dāng)n≥k時(shí),an=1,當(dāng)1≤n<k時(shí),an>1(k≥2,k∈N*),則首項(xiàng)a1可取數(shù)值的個(gè)數(shù)為
           
          (用k表示).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案