日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2009•成都二模)已知函數(shù)f(x)=-
          1
          3
          x3+x2+b,g(x)=
          x+a
          x2+1
          ,其中x∈R
          (I)當b=
          2
          3
          時,若函數(shù)F(x)=
          f(x)(x≤2)
          g(x)(x>2)
          為R上的連續(xù)函數(shù),求F(x)的單調(diào)區(qū)間;
          (Ⅱ)當a=-1時,若對任意x1,x2∈[1,2],不等式g(x1)<f(x2)恒成立,求實數(shù)b的取值范圍.
          分析:(I)由連續(xù)的定義可知,函數(shù)F(x)在x=2處的極限存在且極限與F(2)的值相等,可求a,利用導數(shù)判斷函數(shù)的單調(diào)性即可
          (II)對任意x1,x2∈[-1,2],g(x1)<f(x2)恒成立?g(x)max<f(x)min,x∈[-1,2],利用導數(shù)分別求解函數(shù)g(x)的最大值與f(x)的最小值,從而可求b的范圍
          解答:解:(I)當b=
          2
          3
          時,函數(shù)F(x)為R上的連續(xù)函數(shù),
          lim
          x→2+
          g(x)=
          2+a
          5
          =f(2)=2

          ∴a=8
          ∵f′(x)=-x2+2x=-x(x-2)令f′(x)>0,0<x<2
          ∴當x≤2時,函數(shù)f(x)在(-∞,0)上單調(diào)遞減,在(0,2)上單調(diào)遞增.
          g(x)=
          x+8
          x2+1
          ,g(x)=
          -x2-16x+1
          (x2+1)2

          當x∈(2,+∞時,g′(x)<0恒成立,
          ∴當x>2時,函數(shù)g(x)在(2,+∞)上單調(diào)遞減.
          綜上可知,函數(shù)F(x)的單調(diào)遞增區(qū)間為(0,2),單調(diào)遞減區(qū)間為(-∞,0),(2,+∞)
          (Ⅱ)對任意x1,x2∈[-1,2],f(x1)<f(x2)恒成立
          g(x)max<f(x)min,x∈[-1,2]
          ∵a=-1
          g(x)=
          x-1
          x2+1

          此時g′(x)>0即-x2+2x+1>0
          1-
          2
          <x<1+
          2

          當x∈[-1,2]時,函數(shù)g(x)在[-1,1-
          2
          ]上單調(diào)遞減,在[1-
          2
          ,2]
          上單調(diào)遞增.
          g(-1)=-1,g(2)=
          1
          5

          ∴當x∈[-1,2]時,函數(shù)g(x)的最大值為g(2)=
          1
          5

          結(jié)合(I)中函數(shù)f(x)的單調(diào)性可知:當x∈[-1,2]時,f(x)min=f(0)=b
          ∴g(x)max<f(x)min
          b>
          1
          5

          即實數(shù)b的取值范圍為b∈(
          1
          5
          ,+∞)
          點評:本題主要考查了函數(shù)連續(xù)條件的應用,解題的關(guān)鍵是熟練應用基本定義,及利用導數(shù)求解函數(shù)的單調(diào)區(qū)間及最值,函數(shù)的恒成立與函數(shù)的最值的相互轉(zhuǎn)化
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          (2009•成都二模)在△ABC中,a、b、c分別是三內(nèi)角A、B、C所對邊的長,若bsinA=asinC,則△ABC的形狀( 。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2009•成都二模)質(zhì)檢部門將對12個廠家生產(chǎn)的嬰幼兒奶粉進行質(zhì)量抽檢,若被抽檢廠家的奶粉經(jīng)檢驗合格,則該廠家的奶粉即可投放市場;若檢驗不合格,則該廠家的奶粉將不能投放市場且作廢品處理.假定這12個廠家中只有2個廠家的奶粉存在質(zhì)量問題(即檢驗不能合格),但不知道是哪兩個廠家的奶粉.
          (I)從中任意選取3個廠家的奶粉進行檢驗,求至少有2個廠家的奶粉檢驗合格的概率;
          (Ⅱ)每次從中任意抽取一個廠家的奶粉進行檢驗(抽檢不重復),記首次抽檢到合格奶粉時已經(jīng)檢驗出奶粉存在質(zhì)量問題的廠家個數(shù)為隨即變量ξ,求ξ的分布列及數(shù)學期望.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2009•成都二模)已知集合P={x|x2-2x+1=0,x∈R},則集合P的子集個數(shù)是(  )

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2009•成都二模)化簡復數(shù)i3-
          1+i
          1-i
          的結(jié)果是( 。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2009•成都二模)已知函數(shù)f(x)的定義域為[0,1),則函數(shù)f(1-x)的定義域為(  )

          查看答案和解析>>

          同步練習冊答案