【題目】在△ABC中,a、b、c分別為內(nèi)角A、B、C的對(duì)邊,且2asinA=(2b+c)sinB+(2c+b)sinC
(1)求A的大;
(2)若sinB+sinC=1,試判斷△ABC的形狀.
【答案】
(1)解:由已知,根據(jù)正弦定理得2a2=(2b+c)b+(2c+b)c
即a2=b2+c2+bc
由余弦定理得a2=b2+c2﹣2bccosA
故
(2)解:由(1)得sin2A=sin2B+sin2C+sinBsinC.
變形得 =(sinB+sinC)2﹣sinBsinC
又sinB+sinC=1,得sinBsinC=
上述兩式聯(lián)立得
因?yàn)?°<B<60°,0°<C<60°,
故B=C=30°
所以△ABC是等腰的鈍角三角形.
【解析】(1)利用正弦定理把題設(shè)等式中的角的正弦轉(zhuǎn)化成邊,求得a,b和c關(guān)系式,代入余弦定理中求得cosA的值,進(jìn)而求得A.(2)把(1)中a,b和c關(guān)系式利用正弦定理轉(zhuǎn)化成角的正弦,與sinB+sinC=1聯(lián)立求得sinB和sinC的值,進(jìn)而根據(jù)C,B的范圍推斷出B=C,可知△ABC是等腰的鈍角三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)已知雙曲線(xiàn)的焦點(diǎn)為
,過(guò)
的直線(xiàn)
與曲線(xiàn)
相交于
兩點(diǎn).
(1)若直線(xiàn)的傾斜角為
,且
,求
;
(2)若,橢圓
上兩個(gè)點(diǎn)
滿(mǎn)足:
三點(diǎn)共線(xiàn)且
,求四邊形
的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中錯(cuò)誤的是( )
A. 如果平面不垂直于平面
,那么平面
內(nèi)一定不存在直線(xiàn)垂直于平面
B. 如果平面平面
,平面
平面
,
,那么
平面
C. 不存在四個(gè)角都是直角的空間四邊形
D. 空間圖形經(jīng)過(guò)中心投影后,直線(xiàn)還是直線(xiàn),但平行直線(xiàn)可能變成相交的直線(xiàn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在區(qū)間上的函數(shù)
和
,如果對(duì)任意
,都有
成立,則稱(chēng)
在區(qū)間
上可被
替代,
稱(chēng)為“替代區(qū)間”.給出以下問(wèn)題:
①在區(qū)間
上可被
替代;
②如果在區(qū)間
可被
替代,則
;
③設(shè),則存在實(shí)數(shù)
及區(qū)間
, 使得
在區(qū)間
上被
替代.
其中真命題是
A. ①②③ B. ②③ C. ①③ D. ①②
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函f(x)=sin(ωx+φ)(ω>0,|φ|<π)的部分圖象如圖所示:
(1)求ω,φ的值;
(2)設(shè)g(x)=2 f(
)f(
)﹣1,當(dāng)x∈[0,
]時(shí),求函數(shù)g(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓經(jīng)過(guò)點(diǎn)
,離心率為
,點(diǎn)
坐標(biāo)原點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)橢圓的左焦點(diǎn)
任作一條不垂直于坐標(biāo)軸的直線(xiàn)
,交橢圓
于
兩點(diǎn),記弦
的中點(diǎn)為
,過(guò)
作
的垂線(xiàn)
交直線(xiàn)
于點(diǎn)
,證明:點(diǎn)
在一條定直線(xiàn)上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}是首項(xiàng)為a1=,公比q=
的等比數(shù)列,設(shè)
,數(shù)列
滿(mǎn)足cn=an·bn.
(1)求證:{bn}是等差數(shù)列;
(2)求數(shù)列{cn}的前n項(xiàng)和Sn;
(3)若cn≤m2+m-1對(duì)一切正整數(shù)n恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知.
(1)求角B的大;
(2)若a+c=1,求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù),
.
(Ⅰ)討論的極值點(diǎn)的個(gè)數(shù);
(Ⅱ)若對(duì)于任意,總有
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com