日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】下列命題中錯(cuò)誤的是( )

          A. 如果平面不垂直于平面,那么平面內(nèi)一定不存在直線垂直于平面

          B. 如果平面平面,平面平面, ,那么平面

          C. 不存在四個(gè)角都是直角的空間四邊形

          D. 空間圖形經(jīng)過中心投影后,直線還是直線,但平行直線可能變成相交的直線

          【答案】D

          【解析】選項(xiàng)A, 假若平面α內(nèi)存在直線垂直于平面β,根據(jù)面面垂直的判定定理可知兩平面垂直.故此命題成立;

          選項(xiàng)B, 由面面垂直的性質(zhì)可以分別在α、β內(nèi)作異于l的直線垂直于交線,再由線面垂直的性質(zhì)定理可知所作的垂線平行,進(jìn)而得到線面平行再由線面平行的性質(zhì)可知所作的直線與l平行,又∵兩條平行線中的一條垂直于平面那么另一條也垂直于平面,故命題成立;

          選項(xiàng)C,假設(shè)存在四個(gè)角都是直角的空間四邊形A-BCD,ADAB,CD的公垂線, BCAB,CD的公垂線,這與公垂線的性質(zhì)矛盾,故命題正確;

          選項(xiàng)D, 空間圖形經(jīng)過中心投影后,直線是直線或者點(diǎn),平行直線投影后可能是平行直線,重合直線,或者是兩個(gè)點(diǎn),不可能相交,命題錯(cuò)誤;

          故選D.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】正四棱錐P﹣ABCD,B1為PB的中點(diǎn),D1為PD的中點(diǎn),則兩個(gè)棱錐A﹣B1CD1 , P﹣ABCD的體積之比是(

          A.1:4
          B.3:8
          C.1:2
          D.2:3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在四棱錐PABCD中,OACBD的交點(diǎn),AB平面PAD,PAD是正三角形,DC//AB,DADC2AB.

          1)若點(diǎn)E為棱PA上一點(diǎn),且OE平面PBC,求的值;

          2)求證:平面PBC平面PDC

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】正項(xiàng)數(shù)列{an}前n項(xiàng)和為Sn , 且 (n∈N+
          (1)求數(shù)列{an}的通項(xiàng)公式;
          (2)若 ,數(shù)列{bn}的前n項(xiàng)和為Tn , 證明:T2n1>1>T2n(n∈N+).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】函數(shù)f(x)=x2+ax+3.
          (1)當(dāng)x∈R時(shí),f(x)≥a恒成立,求a的取值范圍.
          (2)當(dāng)x∈[﹣2,2]時(shí),f(x)≥a恒成立,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù),曲線在點(diǎn)處的切線與直線垂直(其中為自然對(duì)數(shù)的底數(shù)).

          (Ⅰ)求的解析式及單調(diào)遞減區(qū)間;

          (Ⅱ)若函數(shù)無(wú)零點(diǎn),求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知cosα= ,cos(α﹣β)= ,且0<β<α<
          (1)求tan2α的值;
          (2)求β.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在△ABC中,a、b、c分別為內(nèi)角A、B、C的對(duì)邊,且2asinA=(2b+c)sinB+(2c+b)sinC
          (1)求A的大;
          (2)若sinB+sinC=1,試判斷△ABC的形狀.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量(噸)與相應(yīng)的生產(chǎn)能耗(噸)標(biāo)準(zhǔn)煤的幾組對(duì)照數(shù)據(jù):

          (1)請(qǐng)畫出上表數(shù)據(jù)的散點(diǎn)圖;并指出是否線性相關(guān);

          (2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程 ;

          (3)已知該廠技術(shù)改造前噸甲產(chǎn)品能耗為噸標(biāo)準(zhǔn)煤,試根據(jù)求出的線性回歸方程,預(yù)測(cè)生產(chǎn)噸甲產(chǎn)品的生產(chǎn)能耗比技術(shù)改造前降低多少噸標(biāo)準(zhǔn)煤?

          (參考:用最小二乘法求線性回歸方程系數(shù)公式 ,, .

          查看答案和解析>>

          同步練習(xí)冊(cè)答案