日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 若集合A具有以下性質(zhì):①0∈A,1∈A;②若x,y∈A,則x-y∈A,且x≠0時(shí),
          1
          x
          ∈A
          .則稱集合A是“好集”.
          (Ⅰ)分別判斷集合B={-1,0,1},有理數(shù)集Q是否是“好集”,并說明理由;
          (Ⅱ)設(shè)集合A是“好集”,求證:若x-y∈A,則x+y∈A;
          (Ⅲ)對(duì)任意的一個(gè)“好集”A,分別判斷下面命題的真假,并說明理由.
          命題p:若x,y∈A,則必有xy∈A;
          命題q:若x,y∈A,且x≠0,則必有
          y
          x
          ∈A
          分析:(1)利用“好集”的概念和集合B,能夠推導(dǎo)出集合B不是“好集”,有理數(shù)集Q是“好集”.
          (2)集合A是“好集”,利用“好集”的概念,能夠證明若x-y∈A,則x+y∈A.
          (3)利用“好集”的概念,由任意的一個(gè)“好集”A,能夠推導(dǎo)出命題p:若x,y∈A,則必有xy∈A和命題q:若x,y∈A,且x≠0,則必有
          y
          x
          ∈A
          都是真命題.
          解答:(本小題滿分14分)
          解:(Ⅰ)集合B不是“好集”.
          理由是:假設(shè)集合B是“好集”.
          因?yàn)?1∈B,1∈B,所以-1-1=-2∈B.這與-2∉B矛盾.…(2分)
          有理數(shù)集Q是“好集”.因?yàn)?∈Q,1∈Q,
          對(duì)任意的x,y∈Q,有x-y∈Q,且x≠0時(shí),
          1
          x
          ∈Q

          所以有理數(shù)集Q是“好集”.…(4分)
          (Ⅱ)因?yàn)榧螦是“好集”,
          所以 0∈A.若x,y∈A,則0-y∈A,即-y∈A.
          所以x-(-y)∈A,即x+y∈A.…(7分)
          (Ⅲ)命題p,q均為真命題.理由如下:…(9分)
          對(duì)任意一個(gè)“好集”A,任取x,y∈A,
          若x,y中有0或1時(shí),顯然xy∈A.
          下設(shè)x,y均不為0,1.由定義可知:x-1,
          1
          x-1
          1
          x
          ∈A.
          所以
          1
          x-1
          -
          1
          x
          ∈A,即
          1
          x(x-1)
          ∈A

          所以x(x-1)∈A.
          由(Ⅱ)可得:x(x-1)+x∈A,即x2∈A.同理可得y2∈A.
          若x+y=0或x+y=1,則顯然(x+y)2∈A.
          若x-y=0,或x-y=1,則(x-y)2∈A.
          所以2xy=(x+y)2-x2-y2∈A.
          所以
          1
          2xy
          ∈A

          由(Ⅱ)可得:
          1
          xy
          =
          1
          2xy
          +
          1
          2xy
          ∈A

          所以 xy∈A.
          綜上可知,xy∈A,即命題p為真命題.
          若x,y∈A,且x≠0,則
          1
          x
          ∈A

          所以
          y
          x
          =y•
          1
          x
          ∈A
          ,即命題q為真命題.…(14分)
          點(diǎn)評(píng):本題考查命題的真假的判斷和應(yīng)用,綜合性強(qiáng),難度大.解題時(shí)要認(rèn)真審題,熟練掌握“好集”的概念,合理地進(jìn)行等價(jià)轉(zhuǎn)化.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          若集合A具有以下性質(zhì):①0∈A,1∈A;②若x,y∈A,則x-y∈A,且x≠0時(shí),
          1
          x
          ∈A
          .則稱集合A是“好集”.
          (Ⅰ)分別判斷集合B={-1,0,1},有理數(shù)集Q是否是“好集”,并說明理由;
          (Ⅱ)設(shè)集合A是“好集”,求證:若x,y∈A,則x+y∈A;
          (Ⅲ)對(duì)任意的一個(gè)“好集”A,分別判斷下面命題的真假,并說明理由.
          命題p:若x,y∈A,則必有xy∈A;
          命題q:若x,y∈A,且x≠0,則必有
          y
          x
          ∈A

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•江西模擬)若集合A具有以下性質(zhì):①0∈A,1∈A;②若x,y∈A,則x-y∈A,且x≠0時(shí),
          1
          x
          ∈A
          .則稱集合A是“好集”.
          (1)集合B={-1,0,1}是好集;
          (2)有理數(shù)集Q是“好集”;
          (3)設(shè)集合A是“好集”,若x,y∈A,則x+y∈A;
          (4)設(shè)集合A是“好集”,若x,y∈A,則必有xy∈A;
          (5)對(duì)任意的一個(gè)“好集A”,若x,y∈A,且x≠0,則必有
          y
          x
          ∈A

          則上述命題正確的個(gè)數(shù)有(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          若集合A具有以下性質(zhì):①0∈A,1∈A;②若x,y∈A,則x-y∈A,且x≠0時(shí),數(shù)學(xué)公式.則稱集合A是“好集”.
          (Ⅰ)分別判斷集合B={-1,0,1},有理數(shù)集Q是否是“好集”,并說明理由;
          (Ⅱ)設(shè)集合A是“好集”,求證:若x,y∈A,則x+y∈A;
          (Ⅲ)對(duì)任意的一個(gè)“好集”A,分別判斷下面命題的真假,并說明理由.
          命題p:若x,y∈A,則必有xy∈A;
          命題q:若x,y∈A,且x≠0,則必有數(shù)學(xué)公式

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年北京市十一學(xué)校高三(上)暑期檢測數(shù)學(xué)試卷3(文科)(解析版) 題型:填空題

          若集合A具有以下性質(zhì):①0∈A,1∈A;②若x,y∈A,則x-y∈A,且x≠0時(shí),.則稱集合A是“好集”.
          (Ⅰ)分別判斷集合B={-1,0,1},有理數(shù)集Q是否是“好集”,并說明理由;
          (Ⅱ)設(shè)集合A是“好集”,求證:若x,y∈A,則x+y∈A;
          (Ⅲ)對(duì)任意的一個(gè)“好集”A,分別判斷下面命題的真假,并說明理由.
          命題p:若x,y∈A,則必有xy∈A;
          命題q:若x,y∈A,且x≠0,則必有

          查看答案和解析>>

          同步練習(xí)冊(cè)答案