日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2013•深圳一模)等差數(shù)列{an}中,a1,a2,a3分別是下表第一、二、三行中的某一個(gè)數(shù),且a1,a2,a3中的任何兩個(gè)數(shù)不在下表的同一列.
          第一列 第二列 第三列
          第一行 2 3 5
          第二行 8 6 14
          第三行 11 9 13
          則a4的值為( 。
          分析:由題意可得 a1 =3,a2 =8,a3=13,可得此等差數(shù)列的公差d的值,故把a(bǔ)3 加上4,即得a4的值.
          解答:解:由題意可得 a1 =3,a2 =8,a3=13,故此等差數(shù)列的公差為5,故a4=a3+d=18,
          故選A.
          點(diǎn)評(píng):本題主要考查等差數(shù)列的定義和性質(zhì),等差數(shù)列的通項(xiàng)公式,屬于中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•深圳一模)已知函數(shù)f(x)=ax+x2-xlna-b(a,b∈R,a>1),e是自然對(duì)數(shù)的底數(shù).
          (1)試判斷函數(shù)f(x)在區(qū)間(0,+∞)上的單調(diào)性;
          (2)當(dāng)a=e,b=4時(shí),求整數(shù)k的值,使得函數(shù)f(x)在區(qū)間(k,k+1)上存在零點(diǎn);
          (3)若存在x1,x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1,試求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•深圳一模)(坐標(biāo)系與參數(shù)方程選做題)在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.曲線C1的參數(shù)方程為
          x=
          t
          y=t+1.
          (t為參數(shù)),曲線C2的極坐標(biāo)方程為ρsinθ-ρcosθ=3,則C1與C2交點(diǎn)在直角坐標(biāo)系中的坐標(biāo)為
          (2,5)
          (2,5)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•深圳一模)設(shè)f(x)為定義在R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=log3(1+x),則f(-2)=( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•深圳一模)已知函數(shù)f(x)=2sin(
          πx
          6
          +
          π
          3
          )(0≤x≤5)
          ,點(diǎn)A、B分別是函數(shù)y=f(x)圖象上的最高點(diǎn)和最低點(diǎn).
          (1)求點(diǎn)A、B的坐標(biāo)以及
          OA
          OB
          的值;
          (2)設(shè)點(diǎn)A、B分別在角α、β的終邊上,求tan(α-2β)的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•深圳一模)已知數(shù)列{an}滿足:a1=1,a2=a(a≠0),an+2=p•
          an+12
          an
          (其中p為非零常數(shù),n∈N*).
          (1)判斷數(shù)列{
          an+1
          an
          }
          是不是等比數(shù)列?
          (2)求an;
          (3)當(dāng)a=1時(shí),令bn=
          nan+2
          an
          ,Sn為數(shù)列{bn}的前n項(xiàng)和,求Sn

          查看答案和解析>>

          同步練習(xí)冊(cè)答案