日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 三棱錐P-ABC中,PC=x,其余棱長均為1.
          (1)求證:PC⊥AB;
          (2)求三棱錐P-ABC的體積的最大值.
          分析:(1)取AB中點M,由△PAB與△CAB均為正三角形,知AB⊥PM,AB⊥CM,由此能夠證明AB⊥PC.
          (2)當(dāng)PM⊥平面ABC時,三棱錐的高為PM,由此能求出三棱錐P-ABC的體積的最大值.
          解答:解:(1)取AB中點M,
          ∵△PAB與△CAB均為正三角形,
          ∴AB⊥PM,AB⊥CM,
          ∴AB⊥平面PCM,
          ∴AB⊥PC.
          (2)當(dāng)PM⊥平面ABC時,
          三棱錐的高為PM,
          此時Vmax=
          1
          3
          S△ABC•PM=
          1
          3
          3
          4
          3
          2
          =
          1
          8
          點評:本題考查PC⊥AB的證明和求三棱錐P-ABC的體積的最大值.解題時要認真審題,仔細解答,注意合理地進行等價轉(zhuǎn)化.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在三棱錐P-ABC中,△PAB是等邊三角形,∠PAC=∠PBC=90°.
          (1)證明:AB⊥PC;
          (2)若PC=4,且平面PAC⊥平面PBC,求三棱錐P-ABC的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在三棱錐P-ABC中,PA⊥平面ABC,∠BAC=
          π2
          ,PA=2,AB=AC=4,點D、E、F分別為BC、AB、AC的中點.
          (I)求證:EF⊥平面PAD;
          (II)求點A到平面PEF的距離;
          (III)求二面角E-PF-A的大小.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在三棱錐P-ABC中,AB⊥BC,AB=BC=kPA,點O、D分別是AC、PC的中點,OP⊥底面ABC.
          (Ⅰ)當(dāng)k=
          12
          時,求直線PA與平面PBC所成角的大;
          (Ⅱ)當(dāng)k取何值時,O在平面PBC內(nèi)的射影恰好為△PBC的重心?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在三棱錐P-ABC中,PC⊥平面ABC,△ABC為正三角形,D、E、F分別是BC,PB,CA的中點.
          (1)證明平面PBF⊥平面PAC;
          (2)判斷AE是否平行于平面PFD,并說明理由;
          (3)若PC=AB=2,求三棱錐P-DEF的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在正三棱錐P-ABC中,M,N分別是PB,PC的中點,若截面AMN⊥側(cè)面PBC,則此棱錐截面與底面所成的二面角正弦值是
          6
          6
          6
          6

          查看答案和解析>>

          同步練習(xí)冊答案