日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=x3+bx2+(b2-1)x+1圖象的對(duì)稱(chēng)中心為(0,1);函數(shù)g(x)=ax3+
          1
          2
          sinθ•x2-2x
          在 區(qū)間[-2,1)上單調(diào)遞減,在[1,+∞)上單調(diào)遞增.
          (Ⅰ)求實(shí)數(shù)b的值;
          (Ⅱ)求sinθ的值及g(x)的解析式;
          (Ⅲ)設(shè)φ(x)=f(x)-g(x),試證:對(duì)任意的x1、x2∈(1,+∞)且x1≠x2,都有|φ(x2)-φ(x1)|>2|x2-x1|.
          (Ⅰ)由題意知,f(x)+f(-x)=2,
          即x3+bx2+(b2-1)x+1-x3+bx2-(b2-1)x+1=2,解得b=0.
          (Ⅱ)g'(x)=3ax2+sinθ•x-2
          g′(2)≤0
          g′(1)=0
          ?
          12a-2sinθ-2≤0
          3a+sinθ-2=0
          ,消去a可得sinθ≥1,
          從而sinθ=1,a=
          1
          3

          ∴sinθ=1,g(x)=
          1
          3
          x3+
          1
          2
          x2-2x

          (Ⅲ)證明:φ(x)=f(x)-g(x)=
          2
          3
          x3-
          1
          2
          x2+x+1

          ∴φ'(x)=2x2-x+1=2(x-
          1
          4
          )
          2
          +
          7
          8

          對(duì)任意的x1、x2∈(1,+∞)且x1≠x2,
          |φ(x2)-φ(x1)|>2|x2-x1|?|φ'(x)|>2.
          而在(1,+∞)上,φ'(x)>φ'(1)=2×
          9
          16
          +
          7
          8
          =2
          ∴對(duì)任意的x1、x2∈(1,+∞)且x1≠x2,都有|φ(x2)-φ(x1)|>2|x2-x1|.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
          π
          2
          )的部分圖象如圖所示,則f(x)的解析式是(  )
          A、f(x)=2sin(πx+
          π
          6
          )(x∈R)
          B、f(x)=2sin(2πx+
          π
          6
          )(x∈R)
          C、f(x)=2sin(πx+
          π
          3
          )(x∈R)
          D、f(x)=2sin(2πx+
          π
          3
          )(x∈R)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•深圳一模)已知函數(shù)f(x)=
          1
          3
          x3+bx2+cx+d
          ,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿(mǎn)足f′(2-x)=f′(x).
          (1)求f(x);
          (2)設(shè)g(x)=x
          f′(x)
           , m>0
          ,求函數(shù)g(x)在[0,m]上的最大值;
          (3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2011•上海模擬)已知函數(shù)f(x)=(
          x
          a
          -1)2+(
          b
          x
          -1)2,x∈(0,+∞)
          ,其中0<a<b.
          (1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
          (2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
          (3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
          求證:f1(x)+f2(x)>
          4c2
          k(k+c)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:上海模擬 題型:解答題

          已知函數(shù)f(x)=(
          x
          a
          -1)2+(
          b
          x
          -1)2,x∈(0,+∞)
          ,其中0<a<b.
          (1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
          (2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
          (3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
          求證:f1(x)+f2(x)>
          4c2
          k(k+c)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:深圳一模 題型:解答題

          已知函數(shù)f(x)=
          1
          3
          x3+bx2+cx+d
          ,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿(mǎn)足f′(2-x)=f′(x).
          (1)求f(x);
          (2)設(shè)g(x)=x
          f′(x)
           , m>0
          ,求函數(shù)g(x)在[0,m]上的最大值;
          (3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案