已知無窮數(shù)列的前
項(xiàng)和為
,且滿足
,其中
、
、
是常數(shù).
(1)若,
,
,求數(shù)列
的通項(xiàng)公式;
(2)若,
,
,且
,求數(shù)列
的前
項(xiàng)和
;
(3)試探究、
、
滿足什么條件時(shí),數(shù)列
是公比不為
的等比數(shù)列.
(1);(2)
;(3)
,
或
或
,
.
【解析】
試題分析:(1)已知與
的關(guān)系,要求
,一般是利用它們之間的關(guān)系
,把
,化為
,得出數(shù)列
的遞推關(guān)系,從而求得通項(xiàng)公式
;(2)與(1)類似,先求出
,
時(shí),推導(dǎo)出
與
之間的關(guān)系,求出通項(xiàng)公式,再求出前
項(xiàng)和
;(3)這是一類探究性命題,可假設(shè)結(jié)論成立,然后由這個(gè)假設(shè)的結(jié)論來推導(dǎo)出條件,本題設(shè)數(shù)列
是公比不為
的等比數(shù)列,則
,
,代入恒成立的等式
,得
對(duì)于一切正整數(shù)
都成立,所以
,
,
,得出這個(gè)結(jié)論之后,還要反過來,由這個(gè)條件證明數(shù)列
是公比不為
的等比數(shù)列,才能說明這個(gè)結(jié)論是正確的.在討論過程中,還要討論
的情況,因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014022806320426143997/SYS201402280634532094691458_DA.files/image024.png">時(shí),
,
,當(dāng)然這種情況下,
不是等比數(shù)列,另外
.
試題解析:(1)由,得
; 1分
當(dāng)時(shí),
,即
2分
所以;
1分
(2)由,得
,進(jìn)而
, 1分
當(dāng)時(shí),
得,
因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014022806320426143997/SYS201402280634532094691458_DA.files/image037.png">,所以, 2分
進(jìn)而
2分
(3)若數(shù)列是公比為
的等比數(shù)列,
①當(dāng)時(shí),
,
由,得
恒成立.
所以,與數(shù)列
是等比數(shù)列矛盾; 1分
②當(dāng),
時(shí),
,
, 1分
由恒成立,
得對(duì)于一切正整數(shù)
都成立
所以,
或
或
,
3分
事實(shí)上,當(dāng),
或
或
,
時(shí),
,
時(shí),
,得
或
所以數(shù)列是以
為首項(xiàng),以
為公比的等比數(shù)列 2分
考點(diǎn):與
的關(guān)系:
,等差數(shù)列與等比數(shù)列的定義.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年上海金山中學(xué)高三第一學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:填空題
已知無窮等比數(shù)列的前
項(xiàng)和
的極限存在,且
,
,則數(shù)列
各項(xiàng)的和為______________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年上海市十三校高三12月聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知無窮數(shù)列的前
項(xiàng)和為
,且滿足
,其中
、
、
是常數(shù).
(1)若,
,
,求數(shù)列
的通項(xiàng)公式;
(2)若,
,
,且
,求數(shù)列
的前
項(xiàng)和
;
(3)試探究、
、
滿足什么條件時(shí),數(shù)列
是公比不為
的等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆江蘇省南京市高三9月學(xué)情調(diào)研文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知無窮數(shù)列中,
、
、
、
構(gòu)成首項(xiàng)為2,公差為-2的等差數(shù)列,
、
、
、
,構(gòu)成首項(xiàng)為
,公比為
的等比數(shù)列,其中
,
.
(1)當(dāng),
,時(shí),求數(shù)列
的通項(xiàng)公式;
(2)若對(duì)任意的,都有
成立.
①當(dāng)時(shí),求
的值;
②記數(shù)列的前
項(xiàng)和為
.判斷是否存在
,使得
成立?若存在,求出
的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年上海市高級(jí)中高三第二次月考試卷數(shù)學(xué) 題型:填空題
已知無窮等比數(shù)列的前
項(xiàng)和
的極限存在,且
,
,則數(shù)列
各項(xiàng)的和為
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com