【題目】(本小題10分) 從3名男生和名女生中任選2人參加比賽。
①求所選2人都是男生的概率;
②求所選2人恰有1名女生的概率;
③求所選2人中至少有1名女生的概率
科目:高中數(shù)學 來源: 題型:
【題目】某市為了鼓勵市民節(jié)約用水,實行“階梯式”水價,將該市每戶居民的月用水量劃分為三檔:月用水量不超過4噸的部分按2元/噸收費,超過4噸但不超過8噸的部分按4元/噸收費,超過8噸的部分按8元/噸收費.
(1)求居民月用水量費用(單位:元)關于月用電量
(單位:噸)的函數(shù)解析式;
(2)為了了解居民的用水情況,通過抽樣,獲得今年3月份100戶居民每戶的用水量,統(tǒng)計分析后得到如圖所示的頻率分布直方圖,若這100戶居民中,今年3月份用水費用不超過16元的占66%,求的值;
(3)在滿足條件(2)的條件下,若以這100戶居民用水量的頻率代替該月全市居民用戶用水量的概率.且同組中的數(shù)據(jù)用該組區(qū)間的中點值代替.記為該市居民用戶3月份的用水費用,求的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了了解2013年某校高三學生的視力情況,隨機抽查了一部分學生視力,將調查結果分組,分組區(qū)間為,
,… ,
經過數(shù)據(jù)處理,得到如右頻率分布表:
(1)求頻率分布表中未知量的值;
(2)從樣本中視力在和
的所有同學中隨機抽取兩人,求兩人的視力差的絕對值低于0.5的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某成衣批發(fā)店為了對一款成衣進行合理定價,將該款成衣按事先擬定的價格進行試銷,得到了如下數(shù)據(jù):
批發(fā)單價x(元) | 80 | 82 | 84 | 86 | 88 | 90 |
銷售量y(件) | 90 | 84 | 83 | 80 | 75 | 68 |
(1)求回歸直線方程 ,其中
(2)預測批發(fā)單價定為85元時,銷售量大概是多少件?
(3)假設在今后的銷售中,銷售量與批發(fā)單價仍然服從(1)中的關系,且該款成衣的成本價為40元/件,為使該成衣批發(fā)店在該款成衣上獲得更大利潤,該款成衣單價大約定為多少元?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法中,正確的是( )
A. 簡單隨機抽樣每個個體被抽到的機會不一樣,與先后有關
B. 由生物學知道生男生女的概率均為,一對夫婦生兩個孩子,則一定為一男一女
C. 互斥事件一定是對立事件,對立事件不一定是互斥事件
D. 老師在某班學號為1~50的50名學生中依次抽取學號為5,10,15,20,25,30,35,40,45,50的學生進行作業(yè)檢查,這種抽樣方法是系統(tǒng)抽樣
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下表提供了某廠節(jié)能降耗技術改造后生產產品過程中記錄的產量x(噸)與相應的生產能耗y(噸)標準煤的幾組對照數(shù)據(jù):
x | 3 | 4 | 5 | 6 |
y | 2.5 | 3 | 4 | 4.5 |
(1)求y關于x的線性回歸方程;(已知 )
(2)已知該廠技術改造前100噸甲產品能耗為90噸標準煤,試根據(jù)(1)求出的線性回歸方程,預測生產100噸甲產品的生產能耗比技術改造前降低了多少噸標準煤.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地區(qū)擬建立一個藝術博物館,采取競標的方式從多家建筑公司選取一家建筑公司,經過層層篩選,甲、乙兩家建筑公司進入最后的招標.現(xiàn)從建筑設計院聘請專家設計了一個招標方案:兩家公司從個招標問題中隨機抽取
個問題,已知這
個招標問題中,甲公司可正確回答其中的
道題目,而乙公司能正確回答毎道題目的概率均為
,甲、乙兩家公司對每題的回答都是相互獨立,互不影響的.
(1)求甲、乙兩家公司共答對道題目的概率;
(2)請從期望和方差的角度分析,甲、乙兩家哪家公司競標成功的可能性更大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓經過點
,
,并且直線
平分圓
.
(1)求圓的方程;
(2)若直線與圓
交于
兩點,是否存在直線
,使得
(
為坐標原點),若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com