日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在幾何體ABCDEF中,底面ABCD為矩形,EF∥CD,AD⊥FC.點(diǎn)M在棱FC上,平面ADM與棱FB交于點(diǎn)N.
          (Ⅰ)求證:AD∥MN;
          (Ⅱ)求證:平面ADMN⊥平面CDEF;
          (Ⅲ)若CD⊥EA,EF=ED,CD=2EF,平面ADE∩平面BCF=l,求二面角A﹣l﹣B的大。

          【答案】(Ⅰ)證明:因為ABCD為矩形,所以AD∥BC,

          所以AD∥平面FBC.

          又因為平面ADMN∩平面FBC=MN,

          所以AD∥MN.

          (Ⅱ)證明:因為ABCD為矩形,所以AD⊥CD.

          因為AD⊥FC,

          所以AD⊥平面CDEF.

          所以平面ADMN⊥平面CDEF.

          (Ⅲ)解:因為EA⊥CD,AD⊥CD,

          所以CD⊥平面ADE,

          所以CD⊥DE.

          由(Ⅱ)得AD⊥平面CDEF,

          所以AD⊥DE.

          所以DA,DC,DE兩兩互相垂直.

          建立空間直角坐標(biāo)系D﹣xyz.

          不妨設(shè)EF=ED=1,則CD=2,設(shè)AD=a(a>0).

          由題意得,A(a,0,0),B(a,2,0),C(0,2,0),D(0,0,0),E(0,0,1),F(xiàn)(0,1,1).

          所以 =(a,0,0), =(0,﹣1,1).

          設(shè)平面FBC的法向量為 =(x,y,z),則

          令z=1,則y=1.

          所以 =(0,1,1).

          又平面ADE的法向量為 =(0,2,0),所以

          = =

          因為二面角A﹣l﹣B的平面角是銳角,

          所以二面角A﹣l﹣B的大小45°


          【解析】(Ⅰ)通過證明AD∥BC,推出AD∥平面FBC,然后證明平AD∥MN.(Ⅱ)證明AD⊥CD,結(jié)合AD⊥FC,說明AD⊥平面CDEF,然后證明平面ADMN⊥平面CDEF.(Ⅲ)說明DA,DC,DE兩兩互相垂直,建立空間直角坐標(biāo)系D﹣xyz,不妨設(shè)EF=ED=1,求出相關(guān)的坐標(biāo),求出平面FBC的法向量,平面ADE的法向量,通過向量的數(shù)量積求解二面角A﹣l﹣B的平面角的大小即可.
          【考點(diǎn)精析】解答此題的關(guān)鍵在于理解平面與平面垂直的判定的相關(guān)知識,掌握一個平面過另一個平面的垂線,則這兩個平面垂直.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】若命題p:從有2件正品和2件次品的產(chǎn)品中任選2件得到都是正品的概率為三分之一;命題q:在邊長為4的正方形ABCD內(nèi)任取一點(diǎn)M,則∠AMB>90°的概率為 ,則下列命題是真命題的是(
          A.p∧q
          B.(p)∧q
          C.p∧(q)
          D.q

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=xlnx,g(x)=x+ (x>0)都在x=x0處取得最小值.
          (1)求f(x0)﹣g(x0)的值.
          (2)設(shè)函數(shù)h(x)=f(x)﹣g(x),h(x)的極值點(diǎn)之和落在區(qū)間(k,k+1),k∈N,求k的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)圓 的圓心為F1 , 直線l過點(diǎn)F2(2,0)且不與x軸、y軸垂直,且與圓F1于C,D兩點(diǎn),過F2作F1C的平行線交直線F1D于點(diǎn)E,
          (1)證明||EF1|﹣|EF2||為定值,并寫出點(diǎn)E的軌跡方程;
          (2)設(shè)點(diǎn)E的軌跡為曲線Γ,直線l交Γ于M,N兩點(diǎn),過F2且與l垂直的直線與圓F1交于P,Q兩點(diǎn),求△PQM與△PQN的面積之和的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè){an}是首項為1,公差為2的等差數(shù)列,{bn}是首項為1,公比為q的等比數(shù)列.記cn=an+bn , n=1,2,3,….
          (1)若{cn}是等差數(shù)列,求q的值;
          (2)求數(shù)列{cn}的前n項和Sn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】北京市2016年12個月的PM2.5平均濃度指數(shù)如圖所示.由圖判斷,四個季度中PM2.5的平均濃度指數(shù)方差最小的是(
          A.第一季度
          B.第二季度
          C.第三季度
          D.第四季度

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知F1(﹣1,0),F(xiàn)2(1,0)分別是橢圓C: =1(a>0)的左、右焦點(diǎn).
          (Ⅰ)求橢圓C的方程;
          (Ⅱ)若A,B分別在直線x=﹣2和x=2上,且AF1⊥BF1
          (。┊(dāng)△ABF1為等腰三角形時,求△ABF1的面積;
          (ⅱ)求點(diǎn)F1 , F2到直線AB距離之和的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】函數(shù)f(x)=(x﹣ )cosx(﹣π≤x≤π且x≠0)的圖象可能為( )
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四棱錐P﹣ABCD中,PD⊥平面PAB,AD∥BC,BC=CD= AD,E,F(xiàn)分別為線段AD,PD的中點(diǎn).
          (Ⅰ)求證:CE∥平面PAB;
          (Ⅱ)求證:PD⊥平面CEF;
          (Ⅲ)寫出三棱錐D﹣CEF與三棱錐P﹣ABD的體積之比.(結(jié)論不要求證明)

          查看答案和解析>>

          同步練習(xí)冊答案