日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 判斷函數(shù)f(x)=在定義域上的單調(diào)性.
          f(x)=在[1,+∞)上為增函數(shù),在(-∞,-1]上為減函數(shù)
          函數(shù)的定義域?yàn)閧x|x≤-1或x≥1},
          則f(x)= ,
          可分解成兩個簡單函數(shù).
          f(x)= =x2-1的形式.當(dāng)x≥1時,u(x)為增函數(shù),為增函數(shù).
          ∴f(x)=在[1,+∞)上為增函數(shù).當(dāng)x≤-1時,u(x)為減函數(shù),為減函數(shù),
          ∴f(x)=在(-∞,-1]上為減函數(shù).
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知:函數(shù)上是奇函數(shù),而且在上是增函數(shù),
          證明:上也是增函數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知函數(shù)y=f(x)對任意x,y∈R均有f(x)+f(y)=f(x+y),且當(dāng)x>0時,f(x)<0,f(1)="-" .
          (1)判斷并證明f(x)在R上的單調(diào)性;
          (2)求f(x)在[-3,3]上的最值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          已知定義在R上的奇函數(shù),滿足,且在區(qū)間[0,2]上是增函數(shù),則(  ).     
          A.B.
          C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


          (1)把全程運(yùn)輸成本y(元)表示為速度x(海里/小時)的函數(shù);
          (2)為了使全程運(yùn)輸成本最小,輪船應(yīng)以多大速度行駛?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題









          (1)判斷函數(shù)上的單調(diào)性;
          (2)若,求不等式的解集

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知函數(shù)f (x)=ln(2+3x)-x2 ..
          小題1:求f (x)在[0, 1]上的極值;
          小題2:若對任意x∈[,],不等式|a-lnx|-ln[ f ’(x)+3x]>0成立,求實(shí)數(shù)a的取值范圍;
          小題3:若關(guān)于x的方程f (x)= -2x+b在[0, 1]上恰有兩個不同的實(shí)根,求實(shí)數(shù)b的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          函數(shù)上是減函數(shù),求的取值集合.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          已知實(shí)數(shù),且函數(shù)有最小值,則=__________。

          查看答案和解析>>

          同步練習(xí)冊答案