日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖:PA⊥平面ABCD,ABCD是矩形,PA=AB=1,AD=,點(diǎn)F是PB的中點(diǎn),點(diǎn)E在邊BC上移動(dòng).
          (Ⅰ)求三棱錐E-PAD的體積;
          (Ⅱ)當(dāng)點(diǎn)E為BC的中點(diǎn)時(shí),試判斷EF與平面PAC的位置關(guān)系,并說(shuō)明理由;
          (Ⅲ)證明:無(wú)論點(diǎn)E在邊BC的何處,都有PE⊥AF.
          【答案】分析:本題考查了空間幾何體的體積、線面位置關(guān)系的判定、線面垂直等知識(shí)點(diǎn),
          (Ⅰ)利用換底法求VP-ADE即可;(Ⅱ)利用三角形的中位線及線面平行的判定定理解決;
          (Ⅲ)通過(guò)證明AF⊥平面PBE即可解決.
          解答:解:(Ⅰ)三棱錐E-PAD的體積.(4分)
          (Ⅱ)當(dāng)點(diǎn)E為BC的中點(diǎn)時(shí),EF與平面PAC平行.(5分)
          ∵在△PBC中,E、F分別為BC、PB的中點(diǎn),
          ∴EF∥PC,又EF?平面PAC,而PC?平面PAC,
          ∴EF∥平面PAC.(8分)
          (Ⅲ)證明:
          ∵PA⊥平面ABCD,BE?平面ABCD,
          ∴EB⊥PA,又EB⊥AB,AB∩AP=A,AB,AP?平面PAB,
          ∴EB⊥平面PAB,又AF?平面PAB,
          ∴AF⊥BE.(10分)
          又PA=AB=1,點(diǎn)F是PB的中點(diǎn),
          ∴AF⊥PB,
          又∵PB∩BE=B,PB,BE?平面PBE,
          ∴AF⊥平面PBE.
          ∵PE?平面PBE,
          ∴AF⊥PE.(12分)
          點(diǎn)評(píng):無(wú)論是線面平行(垂直)還是面面平行(垂直),都源自于線與線的平行(垂直),這種“高維”向“低維”轉(zhuǎn)化的思想方法,在解題時(shí)非常重要,在處理實(shí)際問(wèn)題的過(guò)程中,可以先從題設(shè)條件入手,分析已有的平行(垂直)關(guān)系,再?gòu)慕Y(jié)論入手分析所要證明的平行(垂直)關(guān)系,從而架起已知與未知之間的橋梁.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,PA⊥平面ABCD,四邊形ABCD是正方形,PA=AD=2,M,N分別是AB,PC的中點(diǎn).
          (1)求二面角P-CD-B的大。
          (2)求證:平面MND⊥平面PCD;
          (3)求點(diǎn)P到平面MND的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,PA⊥平面AC,四邊形ABCD是矩形,E、F分別是AB、PD的中點(diǎn).
          (Ⅰ)求證:AF∥平面PCE;
          (Ⅱ)若二面角P-CD-B為45°,AD=2,CD=3,求點(diǎn)F到平面PCE的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,PA⊥平面ABC,AC⊥BC,AB=2,BC=
          2
          ,PB=
          6

          (1)證明:面PAC⊥平面PBC
          (2)求二面角P-BC-A的大小
          (3)求點(diǎn)A到平面PBC的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2010•天津模擬)如圖,PA⊥平面ABCD,ABCD是矩形,PA=AB=1,PD與平面ABCD所成的角是30°,點(diǎn)
          F是PB的中點(diǎn),點(diǎn)E在邊BC上移動(dòng),
          (Ⅰ)當(dāng)點(diǎn)E為BC的中點(diǎn)時(shí),試判斷EF與平面PAC的位置關(guān)系,并說(shuō)明理由;
          (Ⅱ)證明:無(wú)論點(diǎn)E在邊BC的何處,都有PE⊥AF;
          (Ⅲ)當(dāng)BE等于何值時(shí),二面角P-DE-A的大小為45°?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,PA⊥平面ABCD,四邊形ABCD是矩形,PA=AB=1,PD與平面ABCD所成的角是30°,點(diǎn)F是PB的中點(diǎn),點(diǎn)E在邊BC上移動(dòng).
          (1)當(dāng)點(diǎn)E為BC的中點(diǎn)時(shí),試判斷EF與平面PAC的位置關(guān)系,并求出EF到平面PAC的距離;
          (2)命題:“不論點(diǎn)E在邊BC上何處,都有PE⊥AF”,是否成立,并說(shuō)明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案