解:(Ⅰ)根據(jù)題意得,f
-1(x)=

,
于是由a
n=

得,a
n=5S
n+1,
當n=1時,a
1=5s
1+1∴a
1=-

又∵a
n=5s
n+1a
n+1=5a
n+1+1∴a
n+1-a
n=5a
n+1
=-

∴數(shù)列{a
n}是首項為a
1=-

,公比為q=-

的等比數(shù)列,∴a
n=

,
b
n=

(n∈N
*)
(Ⅱ)不存在正整數(shù)k,使得R
n≥4k成立.
證明:由(I)知b
n=

=4+

∵b
2k-1+b
2k=8+

+

=8+

-

=8-

<8
∴當n為偶數(shù)時,設n=2m(m∈N
*)
∴R
n=(b
1+b
2)+(b
3+b
4)+…+(b
2m-1+b
2m)<8m+4n
當n為奇數(shù)時,設n=2m-1(m∈N
*)
∴R
n=(b
1+b
2)+(b
3+b
4)+…+(b
2m-3+b
2m-2)+b
2m-1=8m-4=4n
∴對于一切的正整數(shù)n,都有R
n<4k∴不存在正整數(shù)k,使得R
n≥4k成立.
(Ⅲ)∵c
n=b
2n-b
2n-1=

-

=

+

=

(n∈N),
又

,∴

,當n=1時,

,
當n≥2時,


分析:(I)先根據(jù)題意求出a
n與S
n的關系,然后利用遞推關系進行化簡變形得到數(shù)列{a
n}是首項為a
1=-

,公比為q=-

的等比數(shù)列,從而求出數(shù)列{a
n}與數(shù)列{b
n}的通項公式;
(II)當n為偶數(shù)時,設n=2m(m∈N
*),R
n=(b
1+b
2)+(b
3+b
4)+…+(b
2m-1+b
2m)<8m+4n,當n為奇數(shù)時,設n=2m-1(m∈N
*),則R
n=(b
1+b
2)+(b
3+b
4)+…+(b
2m-3+b
2m-2)+b
2m-1=8m-4=4n,從而對于一切的正整數(shù)n,都有R
n<4k則不存在正整數(shù)k,使得R
n≥4k成立;
(III)根據(jù)b
n的通項公式,計算出c
n的通項公式,再比較T
n與

的大。
點評:本題是一個綜合性很強的題目,主要考查了數(shù)列與函數(shù)的綜合應用以及反函數(shù)和數(shù)列不等式的綜合應用,屬于難題,同時考查了計算能力,分析解決問題的能力.