【題目】設奇函數(shù)f (x )的定義域為R , 且, 當x
時f (x)=
, 則f (x )在區(qū)間
上的表達式為
A. B.
C. D.
科目:高中數(shù)學 來源: 題型:
【題目】設復平面上點對應的復數(shù)
(
為虛數(shù)單位)滿足
,點
的軌跡方程為曲線
. 雙曲線
:
與曲線
有共同焦點,傾斜角為
的直線
與雙曲線
的兩條漸近線的交點是
、
,
,
為坐標原點.
(1)求點的軌跡方程
;
(2)求直線的方程;
(3)設△PQR三個頂點在曲線上,求證:當
是△PQR重心時,△PQR的面積是定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左、右焦點分別是
,且離心率為
,點
為橢圓上的動點,
面積最大值為
.
(1)求橢圓的標準方程;
(2)是橢圓
上的動點,且直線
經過定點
,問在
軸上是否存在定點
,使得
若存在,請求出定點
,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地區(qū)某農產品近幾年的產量統(tǒng)計如表:
(1)根據表中數(shù)據,建立關于
的線性回歸方程
;
(2)根據線性回歸方程預測2019年該地區(qū)該農產品的年產量.
附:對于一組數(shù)據,其回歸直線
的斜率和截距的最小二乘估計分別為:
,
.(參考數(shù)據:
,計算結果保留小數(shù)點后兩位)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是菱形,且∠DAB=60°.點E是棱PC的中點,平面ABE與棱PD交于點F.
(1)求證:AB∥EF;
(2)若PA=PD=AD,且平面PAD⊥平面ABCD,求平面PAF與平面AFE所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司為了解所經銷商品的使用情況,隨機問卷50名使用者,然后根據這50名的問卷評分數(shù)據,統(tǒng)計得到如圖所示的頻率布直方圖,其統(tǒng)計數(shù)據分組區(qū)間為[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求頻率分布直方圖中a的值并估計這50名使用者問卷評分數(shù)據的中位數(shù);
(2)從評分在[40,60)的問卷者中,隨機抽取2人,求此2人評分都在[50,60)的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,圓
的參數(shù)方程為
(
為參數(shù)),以
為極點,
軸的非負半軸為極軸建極坐標系,直線
的極坐標方程為
(Ⅰ)求的極坐標方程;
(Ⅱ)射線與圓C的交點為
與直線
的交點為
,求
的范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列滿足
,且
.
(Ⅰ)求,
的值;
(Ⅱ)是否存在實數(shù),
,使得
,對任意正整數(shù)
恒成立?若存在,求出實數(shù)
、
的值并證明你的結論;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】近年電子商務蓬勃發(fā)展,平臺對每次成功交易都有針對商品和快遞是否滿意的評價系統(tǒng).從該評價系統(tǒng)中選出200次成功交易,并對其評價進行統(tǒng)計,網購者對商品的滿意率為0.70,對快遞的滿意率為0.60,商品和快遞都滿意的交易為80
(1)根據已知條件完成下面的2×2列聯(lián)表,并回答能否有99%認為“網購者對商品滿意與對快遞滿意之間有關系”?
對快遞滿意 | 對快遞不滿意 | 合計 | |
對商品滿意 | 80 | ||
對商品不滿意 | |||
合計 | 200 |
(2)若將頻率視為概率,某人在該網購平臺上進行的3次購物中,設對商品和快遞都滿意的次數(shù)為隨機變量,求
的分布列和數(shù)學期望E(x).
附:,
0.050 | 0.010 | 0.001 | |
K | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com