日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 13、已知數(shù)列{bn}滿足b1=1,b2=x(x∈N),bn+1=|bn-bn-1|(n≥2,n∈N),若前100項中恰好含有30項為0,則x的值為
          6或7
          分析:由b1=1,b2=2,bn+1=|bn-bn-1|(n≥2,n∈N*),若前100項中恰好含有30項為0,則前10項中不能有0,通過賦值可判斷數(shù)列的周期性,進而可求.
          解答:解:若前100項中恰好含有30項為0,則前10項中不能有0,
          當(dāng)x=1時,可得該數(shù)列為1,1,0;1,1,0;…,從而為0的項超過30項
          當(dāng)x=2時,可得該數(shù)列為1,2,1,1,0;1,1,0;1,1,0;…,從而為0的項超過30項
          同理可驗證當(dāng)x=3,4,5,均不符合
          當(dāng)x=6時,可得數(shù)列為1,6,5,1,4,3,1,2,1,1,0;1,1,0;…,
          從而可得數(shù)列從第9項開始為周期為3的數(shù)列,且從第11項開始為0,含0的項有30項
          當(dāng)x=7時,可得該數(shù)列為1,7,6,1,5,4,1,3,2;1,1,0;1,1,0;1,1,0…從而可得數(shù)列從第10項開始為周期為3的數(shù)列,且從第12項開始為0,含0的項有30項
          當(dāng)x>7,則該數(shù)列的0項少于30
          故答案為:6或7
          點評:本題目主要考查了利用數(shù)列的遞推公式求解數(shù)列的項,解題的關(guān)鍵是根據(jù)已知遞推公式,發(fā)現(xiàn)數(shù)列周期性的規(guī)律及取得0項的項數(shù)的判斷.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}是由正數(shù)組成的等比數(shù)列,a3=8,前3項的和S3=14
          (Ⅰ)求數(shù)列{an}的通項公式;
          (Ⅱ)已知數(shù)列{bn}滿足
          b1
          a1
          +
          b2
          a2
          +…+
          bn
          an
          =
          n
          2n
          (n∈N*),證明:{bn}是等差數(shù)列.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{bn}滿足b1=1,b2=5,bn+1=5bn-6bn-1(n≥2),若數(shù)列{an}滿足a1=1,an=bn(
          1
          b1
          +
          1
          b2
          +…+
          1
          bn-1
          )(n≥2,n∈N*)

          (1)求證:數(shù)列{bn+1-2bn}為等比數(shù)列,并求數(shù)列{bn}的通項公式;
          (2)求證:(1+
          1
          a1
          )(1+
          1
          a2
          )…(1+
          1
          an
          )<3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在數(shù)列{}an中,如果存在常數(shù)T(T∈N*),使得an+T=an對于任意正整數(shù)n均成立,那么就稱數(shù)列{an}為周期數(shù)列,其中T叫做數(shù)列{an]的周期.已知數(shù)列{bn}滿足bn+2=|bn+1-bn|,若b1=1,b2=a,(a≤1,a≠0)當(dāng)數(shù)列{bn}的周期為3時,則數(shù)列{bn}的前2010項的和S2010等于(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          x
          1+x
          .設(shè)數(shù)列{an}滿足a1=1,an+1=f(an)(n∈N+).
          (1)求數(shù)列{an}的通項公式;
          (2)已知數(shù)列{bn}滿足b1=
          1
          2
          ,bn+1=(1+bn)2f(bn)(n∈N+),求證:對一切正整數(shù)n≥1都有
          1
          a1+b1
          +
          1
          2a2+b2
          +…+
          1
          nan+bn
          <2.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          x
          1-x
          (0<x<1)
          的反函數(shù)為f-1(x).設(shè)數(shù)列{an}滿足a1=1,an+1=f-1(an)(n∈N*).
          (1)求數(shù)列{an}的通項公式;
          (2)已知數(shù)列{bn}滿足b1=
          1
          2
          ,bn+1=(1+bn)2f-1(bn)
          ,求證:對一切正整數(shù)n≥1都有
          1
          a1+b1
          +
          1
          2a2+b2
          +
          +
          1
          nan+bn
          <2

          查看答案和解析>>

          同步練習(xí)冊答案