已知,點(diǎn)
依次滿足
。
(1)求點(diǎn)的軌跡;
(2)過點(diǎn)作直線
交以
為焦點(diǎn)的橢圓于
兩點(diǎn),線段
的中點(diǎn)到
軸的距離為
,且直線
與點(diǎn)
的軌跡相切,求該橢圓的方程;
(3)在(2)的條件下,設(shè)點(diǎn)的坐標(biāo)為
,是否存在橢圓上的點(diǎn)
及以
為圓心的一個(gè)圓,使得該圓與直線
都相切,如存在,求出
點(diǎn)坐標(biāo)及圓的方程,如不存在,請(qǐng)說明理由.
(1) 以原點(diǎn)為圓心,1為半徑的圓, (2) (3)存在點(diǎn)
,其坐標(biāo)為
或
.
解析試題分析:(1)求動(dòng)點(diǎn)軌跡方程,分四步.第一步,設(shè)動(dòng)點(diǎn)坐標(biāo)第二步建立等量關(guān)系:
第三步化簡等量關(guān)系:
第四步,去雜.求軌跡,不僅求出軌跡方程,而且說明軌跡形狀.(2)求橢圓標(biāo)準(zhǔn)方程,一般利用待定系數(shù)法. 設(shè)直線
的方程為
橢圓的方程
由
與圓相切得:
由直線
的方程與橢圓方程聯(lián)立方程組得:
所以
,
∴
(3)存在性問題,一般從假設(shè)存在出發(fā),列等量關(guān)系,將存在性問題轉(zhuǎn)化為方程是否有解問題. 假設(shè)
,
:
:
,
又,解得:
或
(舍).
解析:(1) 設(shè)
所以,點(diǎn)的軌跡是以原點(diǎn)為圓心,1為半徑的圓. 4分
(2)設(shè)直線的方程為
①
橢圓的方程②
由與圓相切得:
6分
將①代入②得:,
又,可得
,
有,∴
,
.
∴ 9分
(3) 假設(shè)存在橢圓上的一點(diǎn),使得直線
與以Q為圓心的圓相切,
則Q到直線的距離相等,
:
:
12分
化簡整理得:
∵ 點(diǎn)在橢圓上,∴
解得:或
(舍)
時(shí),
,
, &n
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓C:x2+y2+2x-4y+3=0.
(1)若圓C的切線在x軸和y軸上截距相等,求切線的方程;
(2)若為圓C上任意一點(diǎn),求
的最大值與最小值;
(3)從圓C外一點(diǎn)P(x,y)向圓引切線PM,M為切點(diǎn),O為坐標(biāo)原點(diǎn),且有|PM|=|PO|,求當(dāng)|PM|最小時(shí)的點(diǎn)P的坐標(biāo)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)直線的方程為
.
(1)若在兩坐標(biāo)軸上的截距相等,求
的方程;
(2)若不經(jīng)過第二象限,求實(shí)數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
圓內(nèi)有一點(diǎn)
,
為過點(diǎn)
且傾斜角為
的弦,
(1)當(dāng)=1350時(shí),求
;
(2)當(dāng)弦被點(diǎn)
平分時(shí),求出直線
的方程;
(3)設(shè)過點(diǎn)的弦的中點(diǎn)為
,求點(diǎn)
的坐標(biāo)所滿足的關(guān)系式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知兩點(diǎn)A(-1,2)、B(m,3).
(1)求直線AB的方程;
(2)已知實(shí)數(shù)m∈,求直線AB的傾斜角α的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知的頂點(diǎn)
,
的平分線
所在直線方程為
,
邊上的高
所在直線方程為
.
(1)求頂點(diǎn)的坐標(biāo);
(2)求的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com