日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=x2+bx+c對任意α,β∈R都有f(sinα)≥0,且f(2+sinβ)≤0.
          (1)求f(1)的值;
          (2)求證:c≥3;
          (3)若f(sinα)的最大值為10,求f(x)的表達式.
          分析:(1)由sinα,sinβ的有界性以及f(sinα)≥0,f(2+sinβ)≤0;可以求出f(1)的值;
          (2)由二次函數(shù)f(x)的對稱軸以及f(1)的值,可以證出c≥3;
          (3)由題意,判定f(-1)是f(x)在[-1,1]的最大值;又由(1)知f(1)的值;由此求出b、c的值,即得f(x)的表達式.
          解答:解:(1)∵-1≤sinα≤1,1≤2+sinβ≤3,
          且對任意α,β∈R都有f(sinα)≥0,f(2+sinβ)≤0;
          ∴對x∈[-1,1]時,f(x)≥0,對x∈[1,3]時,f(x)≤0;
          ∴f(1)=0.                                                      
          (2)∵對x∈[-1,1]時,f(x)≥0,對x∈[1,3]時,f(x)≤0,
          ∴二次函數(shù)f(x)的對稱軸滿足:x=-
          b
          2
          1+3
          2
          =2
          ,
          ∴b≤4;
          由(1)知,f(1)=0,
          ∴1+b+c=0,
          ∴c=-b-1≥4-1=3.
          (3)∵f(sinα)的最大值為10,
          ∴f(x)在[-1,1]的最大值為10;
          又∵二次函數(shù)f(x)圖象開口向上且對稱軸:x=-
          b
          2
          1+3
          2
          =2

          ∴f(x)在[-1,1]上單調(diào)遞減,
          ∴f(-1)=10,
          ∴1-b+c=10①;
          又由(1)知,f(1)=0,
          ∴1+b+c=0②;
          聯(lián)立①②,解得b=-5,c=4,
          ∴f(x)的表達式為f(x)=x2-5x+4.
          點評:本題結(jié)合三角函數(shù)的知識考查了二次函數(shù)的性質(zhì)與應(yīng)用問題,是綜合性題目.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
          π
          2
          )的部分圖象如圖所示,則f(x)的解析式是( 。
          A、f(x)=2sin(πx+
          π
          6
          )(x∈R)
          B、f(x)=2sin(2πx+
          π
          6
          )(x∈R)
          C、f(x)=2sin(πx+
          π
          3
          )(x∈R)
          D、f(x)=2sin(2πx+
          π
          3
          )(x∈R)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•深圳一模)已知函數(shù)f(x)=
          1
          3
          x3+bx2+cx+d
          ,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
          (1)求f(x);
          (2)設(shè)g(x)=x
          f′(x)
           , m>0
          ,求函數(shù)g(x)在[0,m]上的最大值;
          (3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•上海模擬)已知函數(shù)f(x)=(
          x
          a
          -1)2+(
          b
          x
          -1)2,x∈(0,+∞)
          ,其中0<a<b.
          (1)當a=1,b=2時,求f(x)的最小值;
          (2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
          (3)設(shè)k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
          求證:f1(x)+f2(x)>
          4c2
          k(k+c)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

          已知函數(shù)f(x)=(
          x
          a
          -1)2+(
          b
          x
          -1)2,x∈(0,+∞)
          ,其中0<a<b.
          (1)當a=1,b=2時,求f(x)的最小值;
          (2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
          (3)設(shè)k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
          求證:f1(x)+f2(x)>
          4c2
          k(k+c)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

          已知函數(shù)f(x)=
          1
          3
          x3+bx2+cx+d
          ,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
          (1)求f(x);
          (2)設(shè)g(x)=x
          f′(x)
           , m>0
          ,求函數(shù)g(x)在[0,m]上的最大值;
          (3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案