日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知向量=(cosωx,sinωx),=(cosωx,2cosωx﹣sinωx),ω>0,函數(shù)f(x)=,且函數(shù)f(x)圖象的相鄰兩條對稱軸之間的距離為
          (1)作出函數(shù)y=f(x)﹣1在[0,π]上的圖象
          (2)在△ABC中,a,b,c分別是角A,B,C的對邊,f(A)=2,c=2,S△ABC=,求a的值.
          解(1)∵f(x)==cos2ωx+2sinωxcosωx﹣sin2ωx+1
          =cos2ωx+sin2ωx+1=2sin(2ωx+)+1
          由題意知T=π,又T==π,
          ∴ω=1,f(x)=2sin(2x+)+1,f(x)﹣1=2sin(2x+
          列表:


          (2)f(x)=2sin(2x+)+1,
          ∴f(A)=2sin(2A+)+1=2,
          ∴sin(2A+)=,
          ∵0<A<π,
          <2A+<2π+,
          ∴2A+=,
          ∴A=
          ∴S△ABC=bcsinA=,
          ∴b=1,
          ∴a2=b2+c2﹣2bccosA=1+4﹣2×2×1×=3
          ∴a=
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          已知向量
          a
          =(cosα,sinα),
          b
          =(cosβ,sinβ),
          c
          =(1,7sinα),且0<β<α<
          π
          2
          .若
          a
          b
          =
          13
          14
          ,
          a
          c

          (1)求β的值;
          (2)求cos(2α-
          1
          2
          β)的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知向量
          a
          =(cosθ,sinθ),向量
          b
          =(
          3
          ,1
          ),且
          a
          b
          ,則tanθ的值是( 。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知向量
          a
          =(cosωx,sinωx),
          b
          =(cosωx,
          3
          cosωx),其中(0<ω<2).函數(shù),f(x)=
          a
          b
          -
          1
          2
          其圖象的一條對稱軸為x=
          π
          6

          (I)求函數(shù)f(x)的表達式及單調遞增區(qū)間;
          (Ⅱ)在△ABC中,a、b、c分別為角A、B、C的對邊,S為其面積,若f(
          A
          2
          )
          =1,b=1,S△ABC=
          3
          ,求a的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2012•昌平區(qū)二模)已知向量
          a
          =(cosθ,sinθ),
          b
          =(
          3
          ,-1
          ),-
          π
          2
          ≤θ≤
          π
          2

          (Ⅰ)當
          a
          b
          時,求θ的值;
          (Ⅱ)求|
          a
          +
          b
          |的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知向量
          a
          =(cosα,sinα),
          b
          =(cosβ,sinβ),若|
          a
          -
          b
          |=
          2
          ,則
          a
          b
          的夾角為(  )
          A、60°B、90°
          C、120°D、150°

          查看答案和解析>>

          同步練習冊答案