日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)點(diǎn)P是圓x2y2=4上任意一點(diǎn),由點(diǎn)Px軸作垂線PP0,垂足為P0,且.
          (1)求點(diǎn)M的軌跡C的方程;
          (2)設(shè)直線lykxm(m≠0)與(1)中的軌跡C交于不同的兩點(diǎn)A,B.
          若直線OAAB,OB的斜率成等比數(shù)列,求實(shí)數(shù)m的取值范圍.
          (1)=1(2)(-,0)∪(0,)
          (1)設(shè)點(diǎn)M(x,y),P(x0y0),則由題意知P0(x0,0).
          =(x0x,-y),=(0,-y0),且,得
          (x0x,-y)= (0,-y0).
          于是 
          =4,∴x2y2=4.∴點(diǎn)M的軌跡C的方程為=1.
          (2)設(shè)A(x1,y1),B(x2,y2).聯(lián)立
          得(3+4k2)x2+8mkx+4(m2-3)=0.
          Δ=(8mk)2-16(3+4k2)(m2-3)>0,
          即3+4k2m2>0.(*)且
          依題意,k2,即k2.
          x1x2k2k2x1x2km(x1x2)+m2.
          km(x1x2)+m2=0,即kmm2=0.
          m≠0,∴k+1=0,解得k2.
          k2代入(*),得m2<6.∴m的取值范圍是(-,0)∪(0,).
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          在平面直角坐標(biāo)系xOy中,△ABC的頂點(diǎn)B、C的坐標(biāo)為B(-2,0),C(2,0),直線AB,AC的斜率乘積為,設(shè)頂點(diǎn)A的軌跡為曲線E.
          (1)求曲線E的方程;
          (2)設(shè)曲線E與y軸負(fù)半軸的交點(diǎn)為D,過點(diǎn)D作兩條互相垂直的直線l1,l2,這兩條直線與曲線E的另一個交點(diǎn)分別為M,N.設(shè)l1的斜率為k(k≠0),△DMN的面積為S,試求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          過橢圓的左頂點(diǎn)作斜率為2的直線,與橢圓的另一個交點(diǎn)為,與軸的交點(diǎn)為,已知.
          (1)求橢圓的離心率;
          (2)設(shè)動直線與橢圓有且只有一個公共點(diǎn),且與直線相交于點(diǎn),若軸上存在一定點(diǎn),使得,求橢圓的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          己知⊙O:x2+y2=6,P為⊙O上動點(diǎn),過P作PM⊥x軸于M,N為PM上一點(diǎn),且
          (1)求點(diǎn)N的軌跡C的方程;
          (2)若A(2,1),B(3,0),過B的直線與曲線C相交于D、E兩點(diǎn),則是否為定值?若是,求出該值;若不是,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          設(shè)橢圓+=1(a>b>0)的左焦點(diǎn)為F,離心率為,過點(diǎn)F且與x軸垂直的直線被橢圓截得的線段長為.
          (1)求橢圓的方程;
          (2)設(shè)A,B分別為橢圓的左、右頂點(diǎn),過點(diǎn)F且斜率為k的直線與橢圓交于C,D兩點(diǎn).若·+·=8,求k的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          經(jīng)過橢圓的兩個焦點(diǎn),且與該橢圓有四個不同交點(diǎn),設(shè)是其中的一個交點(diǎn),若的面積為,橢圓的長軸長為,則    (為半焦距).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          若以橢圓上一點(diǎn)和兩個焦點(diǎn)為頂點(diǎn)的三角形面積的最大值為1,則橢圓長軸的最小值為(  )
          A.1B.C.2D.2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          已知任意k∈R,直線y-kx-1=0與橢圓+=1恒有公共點(diǎn),則實(shí)數(shù)m的取值范圍是(  )
          A.(0,1)B.(0,5)
          C.[1,5)∪(5,+∞)D.[1,5)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          已知中心在原點(diǎn)的橢圓與雙曲線有公共焦點(diǎn),且左、右焦點(diǎn)分別為F1F2,兩條曲線在第一象限的交點(diǎn)記為P,△PF1F2是以PF1為底邊的等腰三角形.若|PF1|=10,橢圓與雙曲線的離心率分別為e1,e2,則e1·e2的取值范圍是(  )
          A.0,B.C.,+∞D.,+∞

          查看答案和解析>>

          同步練習(xí)冊答案