在長(zhǎng)方體ABCD-A1B1C1D1中,AD=1,AA1=AB=2.點(diǎn)E是線段AB上的動(dòng)點(diǎn),點(diǎn)M為D1C的中點(diǎn).
(1)當(dāng)E點(diǎn)是AB中點(diǎn)時(shí),求證:直線ME‖平面ADD1 A1;
(2)若二面角AD1EC的余弦值為.求線段AE的長(zhǎng).
(1)證明:見解析;(2).
【解析】
試題分析:(1)證明:取的中點(diǎn)N,連結(jié)MN、AN、
,由三角形中位線定理得到
MN∥,AE∥
,所以四邊形MNAE為平行四邊形,可知 ME∥AN,即得證.
(2)利用空間向量.
設(shè),建立空間直角坐標(biāo)系,將問題轉(zhuǎn)化成計(jì)算平面的“法向量”夾角的余弦,建立
的方程.
試題解析:((1)證明:取的中點(diǎn)N,連結(jié)MN、AN、
,
1分
MN∥,AE∥
,
3分
四邊形MNAE為平行四邊形,可知 ME∥AN
4分
∥平面
.
6分
(2)設(shè),如圖建立空間直角坐標(biāo)系 7分
,
平面
的法向量為
,由
及
得
9分
平面的法向量為
,由
及
得
11分
,即
,解得
所以
12分
考點(diǎn):直線與平面平行的判定,二面角,距離的計(jì)算,空間向量的應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
3 |
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com