日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知x2+y2-2ax+4y-6=0的圓心在直線x+2y+1=0上,那么實(shí)數(shù)a等于
          3
          3
          分析:根據(jù)所給的圓的一般式方程,看出圓的圓心,根據(jù)圓心在一條直線上,把圓心的坐標(biāo)代入直線的方程,得到關(guān)于a的方程,解方程即可.
          解答:解:∵x2+y2-2ax+4y-6=0的圓心是(a,-2),
          圓心在直線x+2y+1=0上,
          ∴a+2(-2)+1=0,
          ∴a=3
          故答案為:3
          點(diǎn)評:本題考查圓的一般方程與點(diǎn)與直線的位置關(guān)系,本題解題的關(guān)鍵是表示出圓心,根據(jù)圓心的位置,寫出符合條件的方程,本題是一個(gè)基礎(chǔ)題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知圓C:x2+y2-8y+12=0,直線l:ax+y+2a=0.若直線l與圓C相交于A,B兩點(diǎn),且|AB|=2
          2
          ,求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,已知橢圓E1方程為
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          ,圓E2方程為x2+y2=a2,過橢圓的左頂點(diǎn)A作斜率為k1直線l1與橢圓E1和圓E2分別相交于B、C. 
          (Ⅰ)若k1=1時(shí),B恰好為線段AC的中點(diǎn),試求橢圓E1的離心率e;
          (Ⅱ)若橢圓E1的離心率e=
          1
          2
          ,F(xiàn)2為橢圓的右焦點(diǎn),當(dāng)|BA|+|BF2|=2a時(shí),求k1的值;
          (Ⅲ)設(shè)D為圓E2上不同于A的一點(diǎn),直線AD的斜率為k2,當(dāng)
          k1
          k2
          =
          b2
          a2
          時(shí),試問直線BD是否過定點(diǎn)?若過定點(diǎn),求出定點(diǎn)坐標(biāo);若不過定點(diǎn),請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知角a的終邊與單位圓x2+y2=1交于P(
          1
          2
          ,y),則sin(
          π
          2
          +2a)=( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的左右焦點(diǎn)為F1(-c,0),F(xiàn)2(c,0),點(diǎn)Q是橢圓外的動點(diǎn),滿足|
          F1Q
          |=2a,點(diǎn)P是線段F1Q與該橢圓的交點(diǎn),曲線C的方程是x2+y2=a2
          (1)若點(diǎn)P的橫坐標(biāo)為
          a
          2
          ,證明:|
          F1P
          |=a+
          c
          2

          (2)試問:曲線C上是否存在點(diǎn)M,使得△F1MF2的面積等于S=b2?若存在,求出橢圓離心率的取值范圍;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=lnx+ax2+bx
          (1)若曲線y=f(x),在點(diǎn)(1,f(1))處的切線與圓x2+y2=1相切,求b取值范圍;
          (2)若2a+b+1=0,討論函數(shù)的單調(diào)性;
          (3)證明:2+
          3
          22
          +
          4
          32
          +…
          n+1
          n2
          >1n(n+1)(n∈N*).

          查看答案和解析>>

          同步練習(xí)冊答案