【題目】如圖,在棱長為3的正方體ABCD-A1B1C1D1中,A1E=CF=1.
(1)求兩條異面直線AC1與BE所成角的余弦值;
(2)求直線BB1與平面BED1F所成角的正弦值.
【答案】(1).(2)
.
【解析】
(1)先根據(jù)題意建立空間直角坐標(biāo)系,求得向量和向量
的坐標(biāo),再利用線線角的向量方法求解.
(2)先求得平面BED1F的一個(gè)法向量,易知向量的坐標(biāo),再利用線面角的向量方法求解.
(1)以D為原點(diǎn),建立空間直角坐標(biāo)系Dxyz,如圖所示,
則A(3,0,0),C1(0,3,3),=(-3,3,3),
B(3,3,0),E(3,0,2),=(0,-3,2).
所以cos〈〉=
=
=
,
故兩條異面直線AC1與BE所成角的余弦值為.
(2) B(3,3,0),=(0,-3,2),
=(3,0,-1).
設(shè)平面BED1F的一個(gè)法向量為n=(x,y,z),
由得
所以則n=(x,2x,3x),不妨取n=(1,2,3),
設(shè)直線BB1與平面BED1F所成的角為α,則
sinα=|cos〈,n〉|=
=
.
所以直線BB1與平面BED1F所成角的正弦值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】由國家統(tǒng)計(jì)局提供的數(shù)據(jù)可知,2012年至2018年中國居民人均可支配收入(單位:萬元)的數(shù)據(jù)如下表:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均可支配收入 | 1.65 | 1.83 | 2.01 | 2.19 | 2.38 | 2.59 | 2.82 |
(1)求關(guān)于
的線性回歸方程(系數(shù)精確到0.01);
(2)利用(1)中的回歸方程,分析2012年至2018年中國居民人均可支配收入的變化情況,并預(yù)測2019年中國居民人均可支配收入.
附注:參考數(shù)據(jù):,
.
參考公式:回歸直線方程的斜率和截距的最小二乘估計(jì)公式分別為:
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方體,過對角線
作平面
交棱
于點(diǎn)E,交棱
于點(diǎn)F,則:
①平面分正方體所得兩部分的體積相等;
②四邊形一定是平行四邊形;
③平面與平面
不可能垂直;
④四邊形的面積有最大值.
其中所有正確結(jié)論的序號為( )
A.①④B.②③C.①②④D.①②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)求的單調(diào)區(qū)間;
(2)若
(i)證明恰有兩個(gè)零點(diǎn);
(ii)設(shè)為
的極值點(diǎn),
為
的零點(diǎn),且
證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐PABCD中,PA⊥底面ABCD,AD∥BC,AB=AC=AD=3,PA=BC=4.
(1)求異面直線PB與CD所成角的余弦值;
(2)求平面PAD與平面PBC所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABCA1B1C1中,AB⊥AC,AB=2,AC=4,AA1=2,=λ
.
(1)若λ=1,求直線DB1與平面A1C1D所成角的正弦值;
(2)若二面角B1- A1C1-D的大小為60°,求實(shí)數(shù)λ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
.
(1)當(dāng)時(shí),求不等式
的解集;
(2)若不等式的解集包含[–1,1],求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為坐標(biāo)原點(diǎn),橢圓
:
的焦距為
,直線
截圓
:
與橢圓
所得的弦長之比為
,橢圓
與
軸正半軸的交點(diǎn)分別為
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)(
且
)為橢圓
上一點(diǎn),點(diǎn)
關(guān)于
軸的對稱點(diǎn)為
,直線
,
分別交
軸于點(diǎn)
,
.試判斷
是否為定值?若是求出該定值,若不是定值,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,橢圓
過點(diǎn)
,焦點(diǎn)
,圓
的直徑為
.
(1)求橢圓及圓
的方程;
(2)設(shè)直線與圓
相切于第一象限內(nèi)的點(diǎn)
,直線
與橢圓
交于
兩點(diǎn).若
的面積為
,求直線
的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com