【題目】在平面直角坐標系中,過橢圓
右焦點的直線
交橢圓
于
兩點,
為
的中點,且直線
的斜率為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)另一直線與橢圓
交于
兩點,原點
到直線
的距離為
,求
面積的最大值.
【答案】(Ⅰ);(Ⅱ)
.
【解析】試題分析:(Ⅰ)由題意,焦點,所以
,再由
,得
,
進而得,即可得到橢圓的標準方程.
(Ⅱ)由題意,①當直線的斜率不存在時或者斜率為0時,易得
;
②設(shè)直線的方程為:
,由題意,原點
到直線
的距離得到
.
設(shè)交點的坐標分別為
,聯(lián)立方程組,得到
,再由弦長公式,利用均值不等式,即可求解最值,進而得到面積的最值.
試題解析:
(Ⅰ)由題意,直線與
軸交于焦點:
,
,設(shè)
,
,
,則:
,
,
,
,又
,
,
即橢圓的方程為:
(Ⅱ)由題意,①當直線的斜率不存在時或者斜率為0時,易得
;
②當直線的斜率存在時且不為0時,設(shè)直線
的方程為:
,由題意,原點
到直線
的距離為
,故
,
.設(shè)交點
的坐標分別為:
,
,
則: ,
,
由題意,
.
,
當且僅當,即
時等號成立,
;
綜上所述,當直線的斜率
時,
即時,
面積的最大值
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的通項公式是
.
(1)判斷是否是數(shù)列
中的項;
(2)試判斷數(shù)列中的各項是否都在區(qū)間
內(nèi);
(3)試判斷在區(qū)間內(nèi)是否有無窮數(shù)列
中的項?若有,是第幾項?若沒有,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
以坐標原點為極點,以
軸正半軸為極軸,建立極坐標系,兩種坐標系中取相同的長度單位,直線
的參數(shù)方程為
(
為參數(shù)),圓
的極坐標方程為
.
(1)求直線的普通方程與圓
的直角坐標方程;
(2)設(shè)圓與直線
交于
兩點,若點
的直角坐標為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=log2(4x)log2(2x)的定義域為 . (Ⅰ)若t=log2x,求t的取值范圍;
(Ⅱ)求y=f(x)的最大值與最小值,并求取得最值時對應(yīng)的x的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)且
.
(I)若,求函數(shù)
的單調(diào)區(qū)間;(其中
是自然對數(shù)的底數(shù))
(II)設(shè)函數(shù),當
時,曲線
與
有兩個交點,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】f(x)=(m﹣1)x2+2mx+3為偶函數(shù),則f(x)在區(qū)間(2,5)上是( )
A.減函數(shù)
B.增函數(shù)
C.有增有減
D.增減性不確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 ≤a≤1,若函數(shù)f(x)=ax2﹣2x+1在區(qū)間[1,3]上的最大值為M(a),最小值為N(a),令g(a)=M(a)﹣N(a).
(1)求g(a)的函數(shù)表達式;
(2)判斷函數(shù)g(a)在區(qū)間[ ,1]上的單調(diào)性,并求出g(a)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2014高考課標2理數(shù)18】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,
E為PD的中點.
(Ⅰ)證明:PB∥平面AEC;
(Ⅱ)設(shè)二面角D-AE-C為60°,AP=1,AD=,求三棱錐E-ACD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著手機的發(fā)展,“微信”越來越成為人們交流的一種方式.某機構(gòu)對“使用微信交流”的態(tài)度進行調(diào)查,隨機抽取了50人,他們年齡的頻數(shù)分布及對“使用微信交流”贊成人數(shù)如下表.
年齡(單位:歲) | ||||||
頻數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數(shù) | 5 | 10 | 12 | 7 | 2 | 1 |
(Ⅰ)若以“年齡”45歲為分界點,由以上統(tǒng)計數(shù)據(jù)完成下面列聯(lián)表,并判斷是否有99%的把握認為“使用微信交流”的態(tài)度與人的年齡有關(guān);
年齡不低于45歲的人數(shù) | 年齡低于45歲的人數(shù) | 合計 | |
贊成 | |||
不贊成 | |||
合計 |
(Ⅱ)若從年齡在和
的被調(diào)查人中按照分層抽樣的方法選取6人進行追蹤調(diào)查,并給予其中3人“紅包”獎勵,求3人中至少有1人年齡在
的概率.
參考數(shù)據(jù)如下:
附臨界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
的觀測值:
(其中
)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com