日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】某校有六間不同的電腦室,每天晚上至少開(kāi)放兩間,欲求不同安排方案的種數(shù),現(xiàn)有3位同學(xué)分別給出了下列三個(gè)結(jié)果:① ;②26-7;③ ,其中正確的結(jié)論是( )
          A.僅有①
          B.僅有②
          C.②與③
          D.僅有③

          【答案】C
          【解析】根據(jù)題意,依次分析3位同學(xué)給出的個(gè)結(jié)果:

          對(duì)于①C62,由組合意義,可得求的是6間不相同的電腦室只開(kāi)放2間的方案數(shù),顯然錯(cuò)誤;

          對(duì)于②26-7,6間電腦室開(kāi)方與否,其情況數(shù)目共有26種,其中都不開(kāi)放和只開(kāi)放1間的方案有C60+C61=7種,則26-7的含義為用全部的方案?jìng)(gè)數(shù)減都不開(kāi)放和只開(kāi)放1間的方案數(shù)目,故正確

          對(duì)于③C63+2C64+C65+C66,因?yàn)镃62=C64,則可以變形為C62+C63+C64+C65+C66,其含義是電腦室開(kāi)放2間、3間,4間、5間、6間的方案數(shù)目之和;故正確.即②和③正確.故答案為:C.

          根據(jù)題意結(jié)合已知條件利用組合的定義分情況討論計(jì)算出結(jié)果即可。

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在平面直角坐標(biāo)系中,已知圓的半徑為2,圓心在軸的正半軸上,且與直線相切.

          (1)求圓的方程。

          (2)在圓上,是否存在點(diǎn),使得直線與圓相交于不同的兩點(diǎn),且△的面積最大?若存在,求出點(diǎn)的坐標(biāo)及對(duì)應(yīng)的△的面積;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)f(x)=(2﹣a)(x﹣1)﹣2lnx
          (1)當(dāng)a=1時(shí),求f(x)的單調(diào)區(qū)間;
          (2)若函數(shù)f(x)在(0, )上無(wú)零點(diǎn),求a最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為ρ=4cosθ,直線l的參數(shù)方程為 (t為參數(shù)).
          (1)求曲線C1的直角坐標(biāo)方程及直線l的普通方程;
          (2)若曲線C2的參數(shù)方程為 (α為參數(shù)),曲線C1上點(diǎn)P的極角為 ,Q為曲線C2上的動(dòng)點(diǎn),求PQ的中點(diǎn)M到直線l距離的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】甲、乙兩人數(shù)學(xué)成績(jī)的莖葉圖如圖所示:

          (1)求出這兩名同學(xué)的數(shù)學(xué)成績(jī)的平均數(shù)、標(biāo)準(zhǔn)差.

          (2)比較兩名同學(xué)的成績(jī),談?wù)勀愕目捶ǎ?/span>

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知銳角三角形ABC中,角A,B,C所對(duì)的邊分別為a,b,c若c﹣a=2acosB,則 的取值范圍是

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知直三棱柱ABC﹣A1B1C1的底面為正三角形,E,F(xiàn)分別是A1C1 , B1C1上的點(diǎn),且滿足A1E=EC1 , B1F=3FC1
          (1)求證:平面AEF⊥平面BB1C1C;
          (2)設(shè)直三棱柱ABC﹣A1B1C1的棱長(zhǎng)均相等,求二面角C1﹣AE﹣B的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知 :方程 有兩個(gè)不等的正根; :方程 表示焦點(diǎn)在 軸上的雙曲線.
          (1)若 為真命題,求實(shí)數(shù) 的取值范圍;
          (2)若“ ”為真,“ ”為假,求實(shí)數(shù) 的取值范圍

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某商店對(duì)新引進(jìn)的商品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷(xiāo),得到如下數(shù)據(jù):

          定價(jià)(元)

          9

          9.2

          9.4

          9.6

          9.8

          10

          銷(xiāo)量件)

          100

          94

          93

          90

          85

          78

          (1)求回歸直線方程;

          (2)假設(shè)今后銷(xiāo)售依然服從(Ⅰ)中的關(guān)系,且該商品金價(jià)為每件5元,為獲得最大利潤(rùn),商店應(yīng)該如何定價(jià)?(利潤(rùn)=銷(xiāo)售收入-成本)

          參考公式:.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案