(本小題滿分13分)
已知橢圓的離心率
,且短半軸
為其左右焦點(diǎn),
是橢圓上動點(diǎn).
(Ⅰ)求橢圓方程;
(Ⅱ)當(dāng)時(shí),求
面積;
(Ⅲ)求取值范圍.
(Ⅰ) ;(Ⅱ)
;(Ⅲ)
解析試題分析:(Ⅰ)
∴橢圓方程為 4分
(Ⅱ)設(shè),
∵,在
中,由余弦定理得:
∴ 7分
∴ 9分
(Ⅲ)設(shè) ,則
,即
∵ ,∴
∴ 11分
∵ ,∴
故 13分
考點(diǎn):本題考查了橢圓方程、橢圓性質(zhì),解三角形,向量的數(shù)量積.
點(diǎn)評:解答時(shí)注意以下的轉(zhuǎn)化:⑴若直線與圓錐曲線有兩個(gè)交點(diǎn),對待交點(diǎn)坐標(biāo)是“設(shè)而不求”的原則,要注意應(yīng)用韋達(dá)定理處理這類問題; ⑵平面向量與解析幾何綜合題,遵循的是平面向量坐標(biāo)化,應(yīng)用的是平面向量坐標(biāo)運(yùn)算法則還有兩向量平行、垂直來解決問題,這就要求同學(xué)們在基本概念、基本方法、基本能力上下功夫.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)命題p:函數(shù)在
上是增函數(shù);命題q:方程
有兩個(gè)不相等的負(fù)實(shí)數(shù)根。求使得p
q是真命題的實(shí)數(shù)對
為坐標(biāo)的點(diǎn)的軌跡圖形及其面積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
Δ兩個(gè)頂點(diǎn)
的坐標(biāo)分別是
,邊
所在直線的斜率之積等于
,求頂點(diǎn)
的軌跡方程,并畫出草圖。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上的橢圓的方程為
它的離心率為
,一個(gè)焦點(diǎn)是(-1,0),過直線
上一點(diǎn)引橢圓
的兩條切線,切點(diǎn)分別是A、B.
(1)求橢圓的方程;
(2)若在橢圓上的點(diǎn)
處的切線方程是
.求證:直線AB恒過定點(diǎn)C,并求出定點(diǎn)C的坐標(biāo);
(3)是否存在實(shí)數(shù),使得求證:
(點(diǎn)C為直線AB恒過的定點(diǎn)).若存在
,請求出,若不存在請說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點(diǎn)為
軸上的動點(diǎn),點(diǎn)
為
軸上的動點(diǎn),點(diǎn)
為定點(diǎn),且滿足
,
.
(Ⅰ)求動點(diǎn)的軌跡
的方程;
(Ⅱ)過點(diǎn)且斜率為
的直線
與曲線
交于兩點(diǎn)
,
,試判斷在
軸上是否存在點(diǎn)
,使得
成立,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(滿分13分)
(1)某三棱錐的側(cè)視圖和俯視圖如圖所示,求三棱錐的體積.
(2)過直角坐標(biāo)平面中的拋物線
的焦點(diǎn)
作一條傾斜角為
的直線與拋物線相交于A,B兩點(diǎn). 用
表示A,B之間的距離;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)
已知橢圓:
的右焦點(diǎn)為F,離心率
,橢圓C上的點(diǎn)到F的距離的最大值為
,直線l過點(diǎn)F與橢圓C交于不同的兩點(diǎn)A、B.
(1) 求橢圓C的方程;
(2) 若,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)如圖,橢圓C方程為 (
),點(diǎn)
為橢圓C的左、右頂點(diǎn)。
(1)若橢圓C上的點(diǎn)到焦點(diǎn)的距離的最大值為3,最小值為1,求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線與(1)中所述橢圓C相交于A、B兩點(diǎn)(A、B不是左、右頂點(diǎn)),且滿足
,求證:直線
過定點(diǎn),并求出該點(diǎn)的坐標(biāo)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)
已知橢圓的中點(diǎn)在原點(diǎn)O,焦點(diǎn)在x軸上,點(diǎn)是其左頂點(diǎn),點(diǎn)C在橢圓上且
·
="0," |
|=|
|.(點(diǎn)C在x軸上方)
(I)求橢圓的方程;
(II)若平行于CO的直線和橢圓交于M,N兩個(gè)不同點(diǎn),求
面積的最大值,并求此時(shí)直線
的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com