日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,組合體由半個圓錐和一個三棱錐構(gòu)成,其中是圓錐底面圓心,是圓弧上一點,滿足是銳角,.

          1)在平面內(nèi)過點平面于點,并寫出作圖步驟,但不要求證明;

          2)在(1)中,若中點,且,求直線與平面所成角的正弦值.

          【答案】1)答案見解析;(2.

          【解析】

          1)①延長的延長線于點;②連接;③過點于點,可得點P.

          2)若中點,則中點,又因為,所以,所以,從而.依題意,兩兩垂直,分別以,,,軸建立空間直角坐標(biāo)系,運用空間向量線面角的求解方法可得解.

          1)①延長的延長線于點;②連接;③過點于點.

          2)若中點,則中點,又因為,所以,所以,從而.

          依題意,兩兩垂直,分別以,,軸建立空間直角坐標(biāo)系,

          ,

          從而,

          設(shè)平面的法向量為,

          ,得.

          ,

          所以直線與平面所成角的正弦值為.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】《高中數(shù)學(xué)課程標(biāo)準(zhǔn)》(2017版)規(guī)定了數(shù)學(xué)直觀想象學(xué)科的六大核心素養(yǎng),為了比較甲、乙兩名高二學(xué)生的數(shù)學(xué)核心素養(yǎng)水平,現(xiàn)以六大素養(yǎng)為指標(biāo)對二人進(jìn)行了測驗,根據(jù)測驗結(jié)果繪制了雷達(dá)圖(如圖,每項指標(biāo)值滿分為5分,分值高者為優(yōu)),則下面敘述正確的是(注:雷達(dá)圖,又可稱為戴布拉圖、蜘蛛網(wǎng)圖,可用于對研究對象的多維分析)(

          A.甲的直觀想象素養(yǎng)高于乙

          B.甲的數(shù)學(xué)建模素養(yǎng)優(yōu)于數(shù)據(jù)分析素養(yǎng)

          C.乙的數(shù)學(xué)建模素養(yǎng)與數(shù)學(xué)運算素養(yǎng)一樣

          D.乙的六大素養(yǎng)整體水平低于甲

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在某單位的食堂中,食堂每天以10元/斤的價格購進(jìn)米粉,然后以4.4元/碗的價格出售,每碗內(nèi)含米粉0.2斤,如果當(dāng)天賣不完,剩下的米粉以2元/斤的價格賣給養(yǎng)豬場.根據(jù)以往統(tǒng)計資料,得到食堂某天米粉需求量的頻率分布直方圖如圖所示,若食堂購進(jìn)了80斤米粉,以(斤)(其中)表示米粉的需求量, (元)表示利潤.

          (1)估計該天食堂利潤不少于760元的概率;

          (2)在直方圖的需求量分組中,以區(qū)間中間值作為該區(qū)間的需求量,以需求量落入該區(qū)間的頻率作為需求量在該區(qū)間的概率,求的分布列和數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)fx)=|xa|+|x+b|,ab0.

          1)當(dāng)a1,b1時,求不等式fx)<3的解集;

          2)若fx)的最小值為2,求的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的中心在原點,焦點在x軸上,長軸的兩個端點分別為、.短軸的兩個端點分別為,.菱形的面積為,離心率.

          (1)求橢圓的標(biāo)準(zhǔn)方程;

          (2)設(shè),經(jīng)過點M作斜率不為0的直線交橢圓C于A、B兩點,若,求直線的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知四棱錐,底面為平行四邊形,且,點M的中點,,且平面平面.

          1)求證:平面平面;

          2)當(dāng)直線與平面所成角的正切值為時,求四棱錐的體積及平面將四棱錐分成的兩部分的體積比.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù).

          (1)當(dāng)時, 恒成立,求的范圍;

          (2)若處的切線為,求的值.并證明當(dāng))時, .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】為了解甲、乙兩種離子在小鼠體內(nèi)的殘留程度,進(jìn)行如下試驗:將200只小鼠隨機分成兩組,每組100只,其中組小鼠給服甲離子溶液,組小鼠給服乙離子溶液.每只小鼠給服的溶液體積相同、摩爾濃度相同.經(jīng)過一段時間后用某種科學(xué)方法測算出殘留在小鼠體內(nèi)離子的百分比.根據(jù)試驗數(shù)據(jù)分別得到如下直方圖:

          為事件:“乙離子殘留在體內(nèi)的百分比不低于”,根據(jù)直方圖得到的估計值為.

          (1)求乙離子殘留百分比直方圖中的值;

          (2)分別估計甲、乙離子殘留百分比的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值為代表).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某運動制衣品牌為了成衣尺寸更精準(zhǔn),現(xiàn)選擇15名志愿者,對其身高和臂展進(jìn)行測量(單位:厘米),左圖為選取的15名志愿者身高與臂展的折線圖,右圖為身高與臂展所對應(yīng)的散點圖,并求得其回歸方程為,以下結(jié)論中不正確的為

          A. 15名志愿者身高的極差小于臂展的極差

          B. 15名志愿者身高和臂展成正相關(guān)關(guān)系,

          C. 可估計身高為190厘米的人臂展大約為189.65厘米,

          D. 身高相差10厘米的兩人臂展都相差11.6厘米,

          查看答案和解析>>

          同步練習(xí)冊答案