日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2006•朝陽區(qū)一模)過雙曲線
          x2
          a2
          -
          y2
          b2
          =1(a>0,b>0)的一個(gè)焦點(diǎn)F引它的一條漸近線的垂線FM,垂足為M,并且交y軸于E,若M為EF的中點(diǎn),則該雙曲線的離心率為( 。
          分析:由雙曲線的標(biāo)準(zhǔn)方程可得右焦點(diǎn)F,漸近線方程,利用中點(diǎn)坐標(biāo)公式和相互垂直的直線的斜率之間的關(guān)系即可得出.
          解答:解:如圖所示.
          取右焦點(diǎn)F(c,0),漸近線y=
          b
          a
          x

          ∵FM⊥OM,∴可得直線FM的方程為y=-
          a
          b
          (x-c)

          令x=0,解得y=
          ac
          b
          ,∴E(0,
          ac
          b
          )

          ∴線段FE的中點(diǎn)M(
          c
          2
          ac
          2b
          )
          ,
          又中點(diǎn)M在漸近線y=
          b
          a
          x
          上,∴
          ac
          2b
          =
          b
          a
          ×
          c
          2
          ,解得a=b.
          ∴該雙曲線的離心率e=
          c
          a
          =
          1+
          b2
          a2
          =
          2

          故選D.
          點(diǎn)評:熟練掌握雙曲線的標(biāo)準(zhǔn)方程及其性質(zhì)、中點(diǎn)坐標(biāo)公式和相互垂直的直線的斜率之間的關(guān)系等是解題的關(guān)鍵.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2006•朝陽區(qū)一模)已知向量
          a
          =(2,3),
          b
          =(1,2),且(
          a
          b
          )⊥(
          a
          -
          b
          )
          ,則λ等于( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2006•朝陽區(qū)一模)設(shè)復(fù)數(shù)z1=1+i,z2=2-3i,則z1•z2等于
          5-i
          5-i

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2006•朝陽區(qū)一模)已知函數(shù)f(x)=
          ax
          x2+b
          ,在x=1處取得極值為2.
          (Ⅰ)求函數(shù)f(x)的解析式;
          (Ⅱ)若函數(shù)f(x)在區(qū)間(m,2m+1)上為增函數(shù),求實(shí)數(shù)m的取值范圍;
          (Ⅲ)若P(x0,y0)為f(x)=
          ax
          x2+b
          圖象上的任意一點(diǎn),直線l與f(x)=
          ax
          x2+b
          的圖象相切于點(diǎn)P,求直線l的斜率的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2006•朝陽區(qū)一模)設(shè)函數(shù)f(x)=ax3+cx(a,c∈R),當(dāng)x=1時(shí),f(x)取極小值-
          2
          3

          (Ⅰ)求f(x)的解析式;
          (Ⅱ)若x1,x2∈[-1,1]時(shí),求證:|f(x1)-f(x2)|≤
          4
          3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2006•朝陽區(qū)一模)已知橢圓
          x2
          a2
          +
          y2
          b2
          =1(a>b>0),中心在坐標(biāo)原點(diǎn)O,一條準(zhǔn)線的方程是x=1,過橢圓的左焦點(diǎn)F,且方向向量為
          a
          =(1,1)的直線l交橢圓于A、B兩點(diǎn),AB的中點(diǎn)為M.
          (Ⅰ)求直線OM的斜率(用a、b表示);
          (Ⅱ)直線AB與OM的夾角為α,當(dāng)tanα=2時(shí),求橢圓的方程;
          (Ⅲ)當(dāng)A、B兩點(diǎn)分別位于第一、三象限時(shí),求橢圓短軸長的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案