日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】 已知函數(shù).

          (1)求函數(shù)在點處的切線方程;

          (2)已知函數(shù)區(qū)間上的最小值為1,求實數(shù)的值.

          【答案】(1); (2).

          【解析】

          (1)求得切線斜率k,點斜式得方程;(2)法一:,由h(x)單調(diào)增,則存在唯一的,,變形,則構造函數(shù),證明函數(shù)有唯一解,即可求解;法一:同法一則,利用基本不等式求解即可

          (1) ,則函數(shù)在點處的切線方程為;

          (2),

          在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,存在唯一的

          使得,即 (*),

          函數(shù)上單調(diào)遞增,,單調(diào)遞減;,單調(diào)遞增,,

          由(*)式得,

          ,顯然是方程的解,

          是單調(diào)減函數(shù),方程有且僅有唯一的解,

          代入(*)式得,,所求實數(shù)的值為.

          解法2:,,

          在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,

          所以函數(shù)上單調(diào)遞增,故存在唯一的

          使得,即 (*),

          ,單調(diào)遞減;,單調(diào)遞增,,

          式得,

          = =

          ,

          (當且僅當 =1),由,此時,

          代入(*)也成立,

          ∴實數(shù)的值為.

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】設函數(shù),a為實數(shù)

          求函數(shù)的單調(diào)區(qū)間;

          若存在實數(shù)a,使得對任意恒成立,求實數(shù)m的取值范圍.提示:

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知雙曲線為焦點,且過點

          1)求雙曲線與其漸近線的方程

          2)若斜率為1的直線與雙曲線相交于兩點,且為坐標原點),求直線的方程

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】設橢圓的右頂點為,上頂點為.已知橢圓的離心率為,.

          )求橢圓的標準方程;

          )設直線與橢圓交于,兩點,且點在第二象限.延長線交于點,若的面積是面積的3倍,求的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】楊輝三角,又稱帕斯卡三角,是二項式系數(shù)在三角形中的一種幾何排列.在我國南宋數(shù)學家楊輝所著的《詳解九章算法》(1261年)一書中用如圖所示的三角形解釋二項式乘方展開式的系數(shù)規(guī)律.現(xiàn)把楊輝三角中的數(shù)從上到下,從左到右依次排列,得數(shù)列:1,1,1,1,2,1,1,3,3,1,1,4,6,4,1…….記作數(shù)列,若數(shù)列的前項和為,則 ( )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,已知平面,,的中點

          1)求所成角的大小

          2)求與平面所成的角的大小

          3)求繞直線旋轉一周所構成的旋轉體的體積

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】在直角坐標系中已知A(4,O)、B(0,2)C(-1,0)、D(0,-2),E在線段AB(不含端點),F在線段CD,E、O、F三點共線.

          (1)F為線段CD的中點,證明:;

          (2)“F為線段CD的中點,的逆命題是否成立?說明理由;

          (3),的值。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知橢圓的離心率,且經(jīng)過點

          求橢圓的方程;

          過點且不與軸重合的直線與橢圓交于不同的兩點,,過右焦點的直線分別交橢圓于點,設 ,的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】《九章算術》是中國古代數(shù)學專著,其中的“更相減損術”可以用來求兩個數(shù)的最大公約數(shù),即“可半者半之,不可半者,副置分母、子之數(shù),以少減多,更相減損,求其等也,以等數(shù)約之.”翻譯成現(xiàn)代語言如下:第一步,任意給定兩個正整數(shù),判斷它們是否都是偶數(shù),若是,用2約簡;若不是,執(zhí)行第二步:第二步,以較大的數(shù)減去較小的數(shù),接著把所得的差與較小的數(shù)比較,并以大數(shù)減小數(shù),繼續(xù)這個操作,知道所得的數(shù)相等為止,則這個數(shù)(等數(shù))或這個數(shù)與約簡的數(shù)的乘積就是所求的最大公約數(shù).現(xiàn)給出更相減損術的程序圖如圖所示,如果輸入的,,則輸出的為( ).

          A. 3B. 6C. 7D. 8

          查看答案和解析>>

          同步練習冊答案