【題目】在某地區(qū)某高傳染性病毒流行期間,為了建立指標顯示疫情已受控制,以便向該地區(qū)居民顯示可以過正常生活,有公共衛(wèi)生專家建議的指標是“連續(xù)7天每天新增感染人數(shù)不超過5人”,根據(jù)連續(xù)7天的新增病例數(shù)計算,下列各個選項中,一定符合上述指標的是__________.
①平均數(shù); ②標準差
; ③平均數(shù)
且標準差
;
④平均數(shù)且極差小于或等于2; ⑤眾數(shù)等于1且極差小于或等于4.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若四面體的三組對棱分別相等,即
,
,
,則________.(寫出所有正確結(jié)論的編號)
①四面體每個面的面積相等
②四面體每組對棱相互垂直
③連接四面體每組對棱中點的線段相互垂直平分
④從四面體每個頂點出發(fā)的三條棱的長都可以作為一個三角形的三邊長
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】自新型冠狀病毒疫情爆發(fā)以來,人們時刻關(guān)注疫情,特別是治愈率,治愈率累計治愈人數(shù)/累計確診人數(shù),治愈率的高低是“戰(zhàn)役”的重要數(shù)據(jù),由于確診和治愈人數(shù)在不斷變化,那么人們就非常關(guān)心第
天的治愈率,以此與之前的治愈率比較,來推斷在這次“戰(zhàn)役”中是否有了更加有效的手段,下面是一段計算治愈率的程序框圖,請同學(xué)們選出正確的選項,分別填入①②兩處,完成程序框圖.( )
:第
天新增確診人數(shù);
:第
天新增治愈人數(shù);
:第
天治愈率
A.,
B.
,
C.,
D.
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《烏鴉喝水》是《伊索寓言》中一個寓言故事,通過講述已知烏鴉喝水的故事,告訴人們遇到困難要運用智慧,認真思考才能讓問題迎刃而解的道理,如圖所示,烏鴉想喝水,發(fā)現(xiàn)有一個錐形瓶,上面部分是圓柱體,下面部分是圓臺,瓶口直徑為
厘米,瓶底直徑為
厘米,瓶口距瓶頸為
厘米,瓶頸到水位線距離和水位線到瓶底距離均為
厘米,現(xiàn)將
顆石子投入瓶中,發(fā)現(xiàn)水位線上移
厘米,若只有當水位線到達瓶口時烏鴉才能喝到水,則烏鴉共需要投入的石子數(shù)量至少是( )
A.顆B.
顆C.
顆D.
顆
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為迎接2022年冬奧會,某市組織中學(xué)生開展冰雪運動的培訓(xùn)活動,并在培訓(xùn)結(jié)束后對學(xué)生進行了考核.記表示學(xué)生的考核成績,并規(guī)定
為考核優(yōu)秀.為了了解本次培訓(xùn)活動的效果,在參加培訓(xùn)的學(xué)生中隨機抽取了30名學(xué)生的考核成績,并作成如圖所示的莖葉圖:
(1)從參加培訓(xùn)的學(xué)生中隨機選取1人,請根據(jù)圖中數(shù)據(jù),估計這名學(xué)生考核為優(yōu)秀的概率;
(2)從圖中考核成績滿足的學(xué)生中任取3人,設(shè)
表示這3人中成績滿足
的人數(shù),求
的分布列和數(shù)學(xué)期望;
(3)根據(jù)以往培訓(xùn)數(shù)據(jù),規(guī)定當時培訓(xùn)有效.請你根據(jù)圖中數(shù)據(jù),判斷此次冰雪培訓(xùn)活動是否有效,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是半圓O的直徑,C是半圓O上除A,B外的一個動點,DC垂直于半圓O所在的平面,DC∥EB,DC=EB=1,AB=4.
(1)證明:平面ADE⊥平面ACD;
(2)當C點為半圓的中點時,求二面角D﹣AE﹣B的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】共享單車又稱為小黃車,近年來逐漸走進了人們的生活,也成為減少空氣污染,緩解城市交通壓力的一種重要手段.為調(diào)查某地區(qū)居民對共享單車的使用情況,從該地區(qū)居民中按年齡用隨機抽樣的方式隨機抽取了人進行問卷調(diào)查,得到這
人對共享單車的評價得分統(tǒng)計填入莖葉圖,如下所示(滿分
分):
(1)找出居民問卷得分的眾數(shù)和中位數(shù);
(2)請計算這位居民問卷的平均得分;
(3)若在成績?yōu)?/span>分的居民中隨機抽取
人,求恰有
人成績超過
分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:
的右頂點為
,離心率為
,點
在橢圓上,點
與點
關(guān)于原點對稱.
(1)求橢圓的標準方程;
(2)求經(jīng)過點,
且和
軸相切的圓的方程;
(3)若,
是橢圓上異于
,
的兩個點,且
,點
在直線
的上方,試判斷
的平分線是否經(jīng)過
軸上的一個定點?若是,求出該定點坐標;若不是,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com