日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=x2+mx+n(m∈R,n∈R).
          (1)若n=1時(shí),“至少存在一個(gè)實(shí)數(shù)x,使f(x)<0成立”(命題表示為?x∈R,使f(x)<0成立)為假命題,求m的取值范圍;
          (2)命題P:函數(shù)y=f(x)在(0,1)上有兩個(gè)不同的零點(diǎn),命題Q:-2<m<0,0<n<1.試分析P是Q的什么條件,并說明理由.(是充要條件、充分不必要條件、必要條件、既不充分也不必要條件)
          【答案】分析:(1)先將“至少存在一個(gè)實(shí)數(shù)x,使f(x)<0成立”為假命題,轉(zhuǎn)化為“?x∈R,f(x)≥0恒成立”為真命題.從而f(x)=x2+mx+n≥0恒成立,利用根的判別式即可求m的取值范圍;
          (2)先說明充分性,P:函數(shù)y=f(x)在(0,1)上有兩個(gè)不同的零點(diǎn),則,求得n的取值范圍:0<n<1,所以P是Q的充分條件;反之,當(dāng)-2<m<0,0<n<1時(shí),取特殊值可得函數(shù)y=f(x)沒有零點(diǎn),從而P是Q的不必要條件;綜上即可得出結(jié)論.
          解答:解:(1)“至少存在一個(gè)實(shí)數(shù)x,使f(x)<0成立”為假命題,則“?x∈R,f(x)≥0恒成立”為真命題.所以f(x)=x2+mx+n≥0恒成立,
          所以△=m2-4n≤0,n=1,m2≤4,-2≤m≤2;                             (7分)
          (2)P是Q的充分不必要條件.
          充分性:P:函數(shù)y=f(x)在(0,1)上有兩個(gè)不同的零點(diǎn),
          ,則,
          故4n<1,即0<n<1,所以P是Q的充分條件;                             (11分)
          當(dāng)-2<m<0,0<n<1時(shí),
          ,
          函數(shù)y=f(x)沒有零點(diǎn),
          所以P是Q的不必要條件;
          綜上:P是Q的充分不必要條件.                                           (15分)
          點(diǎn)評:本小題主要考查命題的真假判斷與應(yīng)用、充要條件的應(yīng)用、不等式的解法等基礎(chǔ)知識,考查運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
          π
          2
          )的部分圖象如圖所示,則f(x)的解析式是( 。
          A、f(x)=2sin(πx+
          π
          6
          )(x∈R)
          B、f(x)=2sin(2πx+
          π
          6
          )(x∈R)
          C、f(x)=2sin(πx+
          π
          3
          )(x∈R)
          D、f(x)=2sin(2πx+
          π
          3
          )(x∈R)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•深圳一模)已知函數(shù)f(x)=
          1
          3
          x3+bx2+cx+d
          ,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
          (1)求f(x);
          (2)設(shè)g(x)=x
          f′(x)
           , m>0
          ,求函數(shù)g(x)在[0,m]上的最大值;
          (3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•上海模擬)已知函數(shù)f(x)=(
          x
          a
          -1)2+(
          b
          x
          -1)2,x∈(0,+∞)
          ,其中0<a<b.
          (1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
          (2)若f(a)≥2m-1對任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
          (3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
          求證:f1(x)+f2(x)>
          4c2
          k(k+c)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

          已知函數(shù)f(x)=(
          x
          a
          -1)2+(
          b
          x
          -1)2,x∈(0,+∞)
          ,其中0<a<b.
          (1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
          (2)若f(a)≥2m-1對任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
          (3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
          求證:f1(x)+f2(x)>
          4c2
          k(k+c)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

          已知函數(shù)f(x)=
          1
          3
          x3+bx2+cx+d
          ,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
          (1)求f(x);
          (2)設(shè)g(x)=x
          f′(x)
           , m>0
          ,求函數(shù)g(x)在[0,m]上的最大值;
          (3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案