已知正三棱柱ABC—A1B1C1,底面邊長(zhǎng)AB=2,AB1⊥BC1,點(diǎn)O、O1分別是邊AC,A1C1的中點(diǎn),建立如圖所示的空間直角坐標(biāo)系.
(Ⅰ)求正三棱柱的側(cè)棱長(zhǎng).
(Ⅱ)若M為BC1的中點(diǎn),試用基底向量、
、
表示向量
;
(Ⅲ)求異面直線AB1與BC所成角的余弦值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示,正方形與矩形
所在平面互相垂直,
,點(diǎn)
為
的中點(diǎn).
(1)求證:∥平面
;
(2)求證:;
(3)在線段上是否存在點(diǎn)
,使二面角
的大小為
?若存在,求出
的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
點(diǎn)P是曲線x2-y-2ln=0上任意一點(diǎn),則點(diǎn)P到直線4x+4y+1=0的最短距離是( )
A.![]() | B.![]() | C.![]() ![]() | D.![]() |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題14分)
如圖2,在四面體中,
且
(1)設(shè)為
的中點(diǎn),證明:在
上存在一點(diǎn)
,使
,并計(jì)算
的值;
(2)求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分)如圖,在四棱錐P-ABCD中,底面ABCD是邊長(zhǎng)為1的正方形,側(cè)棱PA的長(zhǎng)為2,且PA與AB、AD的夾角都等于600,是PC的中點(diǎn),設(shè)
.
(1)試用表示出向量
;
(2)求的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com