日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. sin(
          π
          2
          x+
          π
          4
          )=
          2
          2
          ,x∈(-2,2),則x=
          0或1
          0或1
          分析:設u=sinv,由x的范圍,求出
          π
          2
          x+
          π
          4
          的范圍,并設v=
          π
          2
          x+
          π
          4
          ,且由u=sinv,根據(jù)題意畫出圖形,根據(jù)圖形及sin(
          π
          2
          x+
          π
          4
          )的值,列出關于x的方程,求出方程的解即可得到x的值.
          解答:解:∵x∈(-2,2),
          ∴設v=
          π
          2
          x+
          π
          4
          ∈(-
          4
          ,
          4
          ),
          設u=sinv,根據(jù)題意畫出圖形,如圖所示:

          根據(jù)圖形可得:
          π
          2
          x+
          π
          4
          =
          π
          4
          π
          2
          x+
          π
          4
          =
          4
          ,
          解得:x=0或x=1,
          則x=0或1.
          故答案為:0或1
          點評:此題考查了三角函數(shù)的化簡求值,涉及的知識有正弦函數(shù)的圖象與性質,以及特殊角的三角函數(shù)值,利用了數(shù)形結合的思想,根據(jù)x的范圍求出所求式子角的范圍,畫出相應的圖形是解本題的關鍵.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          下列幾種說法正確的個數(shù)是( 。
          ①函數(shù)y=cos(
          π
          4
          -3x)
          的遞增區(qū)間是[-
          π
          4
          +
          2kπ
          3
          ,
          π
          12
          +
          2kπ
          3
          ],k∈Z
          ;
          ②函數(shù)f(x)=5sin(2x+φ),若f(a)=5,則f(a+
          π
          12
          )<f(a+
          6
          );
          ③函數(shù)f(x)=3tan(2x-
          π
          3
          )
          的圖象關于點(
          12
          ,0)
          對稱;
          ④直線x=
          π
          8
          是函數(shù)y=sin(2x+
          π
          4
          )
          圖象的一條對稱軸;
          ⑤函數(shù)y=cosx的圖象可由函數(shù)y=sin(x+
          π
          4
          )
          的圖象向右平移
          π
          4
          個單位得到.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2011•福建模擬)給出以下四個結論:
          (1)若關于x的方程x-
          1
          x
          +k=0
          在x∈(0,1)沒有實數(shù)根,則k的取值范圍是k≥2
          (2)曲線y=1+
          4-x2
          (|x|≤2)
          與直線y=k(x-2)+4有兩個交點時,實數(shù)k的取值范圍是(
          5
          12
          ,
          3
          4
          ]

          (3)已知點P(a,b)與點Q(1,0)在直線2x-3y+1=0兩側,則3b-2a>1;
          (4)若將函數(shù)f(x)=sin(2x-
          π
          3
          )
          的圖象向右平移?(?>0)個單位后變?yōu)榕己瘮?shù),則?的最小值是
          π
          12
          ,其中正確的結論是:
          (2)(3)(4)
          (2)(3)(4)

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)=2
          3
          sin(x+
          π
          4
          )cos(x+
          π
          4
          )-sin(2x+π)

          (1)求f(x)的最小正周期;
          (2)若將f(x)的圖象向右平移
          π
          3
          個單位,得到函數(shù)g(x)的圖象,求函數(shù)g(x)在區(qū)間[0,
          π
          2
          )
          上的最大值和最小值,并求出相應的x的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)y=f(x),任取t∈R,定義集合:At={y|y=f(x),點P(t,f(t)),Q(x,f(x)),|PQ|≤
          2
          }
          .設Mt,mt分別表示集合At中元素的最大值和最小值,記h(t)=Mt-mt.則:
          (1)若函數(shù)f(x)=x,則h(1)=
           

          (2)若函數(shù)f(x)=sin
          π
          2
          x
          ,則h(t)的最大值為
           

          查看答案和解析>>

          同步練習冊答案