日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知,且在區(qū)間上是增函數(shù).

          1)求實(shí)數(shù)的值組成的集合;

          2)設(shè)函數(shù)的兩個(gè)極值點(diǎn)為、,試問(wèn):是否存在實(shí)數(shù),使得不等式對(duì)任意恒成立?若存在,求的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

          【答案】1;(2

          【解析】

          1)由在區(qū)間,上是增函數(shù).可得,在區(qū)間,上恒成立.可得,,即可得出.

          2)函數(shù)的兩個(gè)極值點(diǎn)為、,可得,,設(shè)a,,,則a)是偶函數(shù),且在,上單調(diào)遞增.進(jìn)而得出其最大值.對(duì)任意恒成立,可得,解得范圍即可得出.

          解:(1在區(qū)間,上是增函數(shù).

          ,在區(qū)間,上恒成立.

          , ,解得

          2)函數(shù)的兩個(gè)極值點(diǎn)為、

          ,

          ,

          ,設(shè)a,,則a)是偶函數(shù),且在,上單調(diào)遞增.

          的最大值為1

          設(shè),,,

          對(duì)任意恒成立,則,解得

          存在實(shí)數(shù),使得不等式對(duì)任意恒成立.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)fx)=sinωx+φ)(ω0)的最小正周期為π,且關(guān)于中心對(duì)稱(chēng),則下列結(jié)論正確的是(

          A.f1)<f0)<f2B.f0)<f2)<f1

          C.f2)<f0)<f1D.f2)<f1)<f0

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知四棱錐中,底面是正方形,平面,,的中點(diǎn).

          1)求證:平面平面;

          2)求二面角的大小;

          3)試判斷所在直線(xiàn)與平面是否平行,并說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】割圓術(shù)是我國(guó)古代計(jì)算圓周率的一種方法.在公元年左右,由魏晉時(shí)期的數(shù)學(xué)家劉徽發(fā)明.其原理就是利用圓內(nèi)接正多邊形的面積逐步逼近圓的面積,進(jìn)而求.當(dāng)時(shí)劉微就是利用這種方法,把的近似值計(jì)算到之間,這是當(dāng)時(shí)世界上對(duì)圓周率的計(jì)算最精確的數(shù)據(jù).這種方法的可貴之處就是利用已知的、可求的來(lái)逼近未知的、要求的,用有限的來(lái)逼近無(wú)窮的.為此,劉微把它概括為割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓合體,而無(wú)所失矣”.這種方法極其重要,對(duì)后世產(chǎn)生了巨大影響,在歐洲,這種方法后來(lái)就演變?yōu)楝F(xiàn)在的微積分.根據(jù)割圓術(shù),若用正二十四邊形來(lái)估算圓周率,則的近似值是( )(精確到)(參考數(shù)據(jù)

          A.B.

          C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】

          如圖,平行四邊形中,,沿折起到的位置,使平面平面

          )求證:;

          )求三棱錐的側(cè)面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖所示,直三棱柱的底面為等腰直角三角形,其中,點(diǎn)是線(xiàn)段的中點(diǎn).

          (Ⅰ)若點(diǎn)滿(mǎn)足,且,求的值;

          (Ⅱ)求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某語(yǔ)文報(bào)社為研究學(xué)生課外閱讀時(shí)間與語(yǔ)文考試中的作文分?jǐn)?shù)的關(guān)系,隨機(jī)調(diào)查了本市某中學(xué)高三文科班名學(xué)生每周課外閱讀時(shí)間(單位:小時(shí))與高三下學(xué)期期末考試中語(yǔ)文作文分?jǐn)?shù),數(shù)據(jù)如下表:

          1

          2

          3

          4

          5

          6

          38

          40

          43

          45

          50

          54

          1)根據(jù)上述數(shù)據(jù),求出高三學(xué)生語(yǔ)文作文分?jǐn)?shù)與該學(xué)生每周課外閱讀時(shí)間的線(xiàn)性回歸方程,并預(yù)測(cè)某學(xué)生每周課外閱讀時(shí)間為小時(shí)時(shí)其語(yǔ)文作文成績(jī);

          2)從這人中任選人,這人中至少有人課外閱讀時(shí)間不低于小時(shí)的概率.

          參考公式:,其中

          參考數(shù)據(jù):,

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】隨著經(jīng)濟(jì)模式的改變,微商和電商已成為當(dāng)今城鄉(xiāng)一種新型的購(gòu)銷(xiāo)平臺(tái).已知經(jīng)銷(xiāo)某種商品的電商在任何一個(gè)銷(xiāo)售季度內(nèi),每售出噸該商品可獲利潤(rùn)萬(wàn)元,未售出的商品,每噸虧損萬(wàn)元.根據(jù)往年的銷(xiāo)售經(jīng)驗(yàn),得到一個(gè)銷(xiāo)售季度內(nèi)市場(chǎng)需求量的頻率分布直方圖如圖所示.已知電商為下一個(gè)銷(xiāo)售季度籌備了噸該商品.現(xiàn)以(單位:噸,)表示下一個(gè)銷(xiāo)售季度的市場(chǎng)需求量,(單位:萬(wàn)元)表示該電商下一個(gè)銷(xiāo)售季度內(nèi)經(jīng)銷(xiāo)該商品獲得的利潤(rùn).

          1)將表示為的函數(shù),求出該函數(shù)表達(dá)式;

          2)根據(jù)直方圖估計(jì)利潤(rùn)不少于57萬(wàn)元的概率;

          3)根據(jù)頻率分布直方圖,估計(jì)一個(gè)銷(xiāo)售季度內(nèi)市場(chǎng)需求量的平均數(shù)與中位數(shù)的大。ūA舻叫(shù)點(diǎn)后一位).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】芻甍,中國(guó)古代算術(shù)中的一種幾何圖形,《九章算術(shù)》中記載芻甍者,下有褒有廣,而上有褒無(wú)廣芻,草也;甍,屋蓋也.翻譯為底面有長(zhǎng)有寬為矩形,頂部只有長(zhǎng)沒(méi)有寬為一條棱,芻甍字面意思為茅草屋頂如圖,為一芻甍的三視圖,其中正視圖為等腰梯形,側(cè)視圖為等腰三角形,若用茅草搭建它(無(wú)底面,不考慮厚度),則需要覆蓋的面積至少為(

          A.B.C.D.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案