【題目】已知橢圓,左、右頂點(diǎn)分別為
,
,上、下頂點(diǎn)分別為
,
,且
,
為等邊三角形,過點(diǎn)
的直線與橢圓
在
軸右側(cè)的部分交于
、
兩點(diǎn),
為坐標(biāo)原點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求面積的取值范圍.
【答案】(1);(2)
.
【解析】
(1)由題意可得,
,根據(jù)橢圓的標(biāo)準(zhǔn)方程即可求解.
(2)分類討論:當(dāng)直線的斜率不存在時(shí),求出
的面積;當(dāng)直線
的斜率存在時(shí),設(shè)直線
的斜率為
,直線
的方程為
,將直線與橢圓聯(lián)立,利用韋達(dá)定理結(jié)合
即可求出面積的最值.
(1)因?yàn)?/span>,所以
,因?yàn)?/span>
為等邊三角形,
所以,所以
.
所以橢圓的標(biāo)準(zhǔn)方程為.
(2)設(shè)的面積為
.
①當(dāng)直線的斜率不存在時(shí),可得
,
,
所以.
②當(dāng)直線的斜率存在時(shí),設(shè)直線
的斜率為
,
則直線的方程為
,
設(shè),
,聯(lián)立
,
化簡得,
所以,
,
,
因?yàn)?/span>,
,所以
,面積
,
令,則
,
,
由
則在定義域內(nèi)單調(diào)遞減,
所以,綜上
面積的取值范圍是
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某醫(yī)院為篩查某種疾病,需要檢驗(yàn)血液是否為陽性,現(xiàn)有份血液樣本,有以下兩種檢驗(yàn)方式:①逐份檢驗(yàn),列需要檢驗(yàn)
次;②混合檢驗(yàn),將其
(
且
)份血液樣本分別取樣混合在一起檢驗(yàn).若檢驗(yàn)結(jié)果為陰性,這
份的血液全為陰性,因而這
份血液樣本只要檢驗(yàn)一次就夠了,如果檢驗(yàn)結(jié)果為陽性,為了明確這
份血液究竟哪幾份為陽性,就要對這
份再逐份檢驗(yàn),此時(shí)這
份血液的檢驗(yàn)次數(shù)總共為
次.假設(shè)在接受檢驗(yàn)的血液樣本中,每份樣本的檢驗(yàn)結(jié)果是陽性還是陰性都是獨(dú)立的,且每份樣本是陽性結(jié)果的概率為
.
(1)假設(shè)有5份血液樣本,其中只有2份樣本為陽性,若采用逐份檢驗(yàn)的方式,求恰好經(jīng)過3次檢驗(yàn)就能把陽性樣本全部檢驗(yàn)出來的概率.
(2)現(xiàn)取其中(
且
)份血液樣本,記采用逐份檢驗(yàn)方式,樣本需要檢驗(yàn)的總次數(shù)為
,采用混合檢驗(yàn)方式,樣本需要檢驗(yàn)的總次數(shù)為
.
(i)運(yùn)用概率統(tǒng)計(jì)的知識,若,試求
關(guān)于
的函數(shù)關(guān)系式
;
(ii)若,且采用混合檢驗(yàn)方式可以使得樣本需要檢驗(yàn)的總次數(shù)的期望值比逐份檢驗(yàn)的總次數(shù)期望值更少,求
的最大值.
參考數(shù)據(jù):,
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年空氣質(zhì)量逐步惡化,霧霾天氣現(xiàn)象出現(xiàn)增多,大氣污染危害加重. 大氣污染可引起心悸、呼吸困難等心肺疾病。為了解某市心肺疾病是否與性別有關(guān),在某醫(yī)院隨機(jī)的對入院50人進(jìn)行了問卷調(diào)查得到了如在的列聯(lián)表:已知在全部50人中隨機(jī)抽取1人,抽到患心肺疾病的人的概率為.
(Ⅰ)請將右面的列聯(lián)表補(bǔ)充完整;
患心肺疾病 | 不患心肺疾病 | 合計(jì) | |
男 | 5 | ||
女 | 10 | ||
合計(jì) | 50 |
(Ⅱ)是否有99.5%的把握認(rèn)為患心肺疾病與性別有關(guān)?說明你的理由;
(Ⅲ)已知在患心肺疾病的10位女性中,有3位又患胃病.現(xiàn)在從患心肺疾病的10位女性中,選出3名進(jìn)行其他方面的排查,記選出患胃病的女性人數(shù)為,求
的分布列以及數(shù)學(xué)期望.
下面的臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式 其中
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】雙曲線的左右焦點(diǎn)分別為
,
,
為坐標(biāo)原點(diǎn).
為曲線
右支上的點(diǎn),點(diǎn)
在
外角平分線上,且
.若
恰為頂角為
的等腰三角形,則該雙曲線的離心率為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國古典樂器一般按“八音”分類.“八音”是我國最早按樂器的制造材料來對樂器進(jìn)行分類的方法,最先見于《周禮·春官·大師》,分為“金、石、土、革、絲、木、匏(páo)、竹”八音.其中“金、石、木、革”為打擊樂器,“土、匏、竹”為吹奏樂器,“絲”為彈撥樂器,現(xiàn)從打擊樂器、彈撥樂器中任取不同的‘兩音’,含有彈撥樂器的概率為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)
,過其準(zhǔn)線與
軸的交點(diǎn)
作直線
,
(1)若直線與拋物線相切于點(diǎn)
,則
=_____________.
(2)設(shè),若直線
與拋物線交于點(diǎn)
,且
,則
=_____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】金秋九月,丹桂飄香,某高校迎來了一大批優(yōu)秀的學(xué)生.新生接待其實(shí)也是和社會溝通的一個(gè)平臺.校團(tuán)委、學(xué)生會從在校學(xué)生中隨機(jī)抽取了160名學(xué)生,對是否愿意投入到新生接待工作進(jìn)行了問卷調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如下:
愿意 | 不愿意 | |
男生 | 60 | 20 |
女士 | 40 | 40 |
(1)根據(jù)上表說明,能否有99%把握認(rèn)為愿意參加新生接待工作與性別有關(guān);
(2)現(xiàn)從參與問卷調(diào)查且愿意參加新生接待工作的學(xué)生中,采用按性別分層抽樣的方法,選取10人.若從這10人中隨機(jī)選取3人到火車站迎接新生,設(shè)選取的3人中女生人數(shù)為,寫出
的分布列,并求
.
附:,其中
.
0.05 | 0.01 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
(1)求的最大值;
(2)若對于任意的,不等式
恒成立,求整數(shù)a的最小值.(參考數(shù)據(jù)
,
)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com