【題目】如圖,四棱柱中,
平面
,
,
,
,
,
為棱
的中點(diǎn)
(1)證明:;
(2)設(shè)點(diǎn)在線段
上,且直線
與平面
所成角的正弦值為
,求線段
的長(zhǎng).
【答案】(1)證明見解析;(2).
【解析】
(1)通過(guò)勾股定理計(jì)算證明證得,再證得
,由此證得
平面
,從而證得
.
(2)建立空間直角坐標(biāo)系,利用得出
點(diǎn)的坐標(biāo),根據(jù)直線
與平面
所成角的正弦值為
列方程,解方程求得
的值,進(jìn)而求得線段
的長(zhǎng).
(1)在中
,
,
,∴
,
∵平面
,平面
∥平面
,
∴平面
,又
∥
,所以
平面
,
所以且
∴平面
,
∴
(2)由題可知,,
,
兩兩垂直,以
為原點(diǎn),分別以
,
,
所在直線為
軸,
軸,
軸建立空間直角坐標(biāo)系,
則,
,
,
,
,
,
,設(shè)
,則
則
易知為平面
的一個(gè)法向量.
設(shè)為直線
與平面
所成角,則
解得,
(舍去)
所以,
,故線段
的長(zhǎng)為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校高三文科名學(xué)生參加了
月份的高考模擬考試,學(xué)校為了了解高三文科學(xué)生的歷史、地理學(xué)習(xí)情況,從
名學(xué)生中抽取
名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì)分析,抽出的
名學(xué)生的地理、歷史成績(jī)?nèi)缦卤恚?/span>
地理 歷史 | [80,100] | [60,80) | [40,60) |
[80,100] | 8 | m | 9 |
[60,80) | 9 | n | 9 |
[40,60) | 8 | 15 | 7 |
若歷史成績(jī)?cè)赱80,100]區(qū)間的占30%,
(1)求的值;
(2)請(qǐng)根據(jù)上面抽出的名學(xué)生地理、歷史成績(jī),填寫下面地理、歷史成績(jī)的頻數(shù)分布表:
[80,100] | [60,80) | [40,60) | |
地理 | |||
歷史 |
根據(jù)頻數(shù)分布表中的數(shù)據(jù)估計(jì)歷史和地理的平均成績(jī)及方差(同一組數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表),并估計(jì)哪個(gè)學(xué)科成績(jī)更穩(wěn)定.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線C:x2=2py(p>0)的焦點(diǎn)為F.過(guò)F的直線與拋物線C交于A、B,與拋物線C的準(zhǔn)線交于M.
(1)若|AF|=|FM|=4,求常數(shù)p的值;
(2)設(shè)拋物線C在點(diǎn)A、B處的切線相交于N,求動(dòng)點(diǎn)N的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直三棱柱ABC-A1B1C1中,D,E分別是AB,BB1的中點(diǎn).
(Ⅰ)證明: BC1//平面A1CD;
(Ⅱ)設(shè)AA1= AC=CB=2,AB=2,求三棱錐C一A1DE的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
⑴求函數(shù)的單調(diào)區(qū)間;
⑵如果對(duì)于任意的,
總成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正三棱柱中,(底面為正三角形,側(cè)棱垂直于底面),側(cè)棱長(zhǎng)
,底面邊長(zhǎng)
,
是
的中點(diǎn).
(1)求證:平面平面
;
(2)設(shè)是線段
的中點(diǎn),求直線
與平面
所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)當(dāng)時(shí),求
的單調(diào)區(qū)間;
(2)若是
的極大值點(diǎn),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系中,直線的參數(shù)方程為
,(
為參數(shù)).以原點(diǎn)為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)寫出直線的極坐標(biāo)方程與曲線
的直角坐標(biāo)方程;
(2)已知與直線平行的直線
過(guò)點(diǎn)
,且與曲線
交于
兩點(diǎn),試求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),
.
(Ⅰ)求函數(shù)在點(diǎn)
點(diǎn)處的切線方程;
(Ⅱ)當(dāng)時(shí),
恒成立,求
的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com