日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知拋物線的頂點(diǎn)為橢圓
          x2
          a2
          +
          y2
          b2
          =1
          (a>b>0)的中心.橢圓的離心率是拋物線離心率的一半,且它們的準(zhǔn)線互相平行.又拋物線與橢圓交于點(diǎn)M(
          2
          3
          ,-
          2
          6
          3
          )
          ,求拋物線與橢圓的方程.
          分析:設(shè)出拋物線方程,代入M的坐標(biāo),可得拋物線的方程,利用橢圓的離心率是拋物線離心率的一半,代入M的坐標(biāo),求得幾何量,即可得到結(jié)論.
          解答:解:由題意,設(shè)拋物線的方程為y2=2px(p>0),則
          M(
          2
          3
          ,-
          2
          6
          3
          )
          代入方程可得
          8
          3
          =2p×
          2
          3
          ,∴p=2,
          ∴拋物線的方程為y2=4x
          ∵橢圓的離心率是拋物線離心率的一半,
          e=
          c
          a
          =
          1
          2

          4
          9
          a2
          +
          8
          3
          b2
          =1
          ,a2=b2+c2
          ∴a=2,b=
          3

          ∴橢圓方程為:
          x2
          4
          +
          y2
          3
          =1
          點(diǎn)評(píng):本題考查拋物線、橢圓的標(biāo)準(zhǔn)方程,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•浦東新區(qū)三模)已知橢圓C的長軸長是焦距的兩倍,其左、右焦點(diǎn)依次為F1、F2,拋物線M:y2=4mx(m>0)的準(zhǔn)線與x軸交于F1,橢圓C與拋物線M的一個(gè)交點(diǎn)為P.
          (1)當(dāng)m=1時(shí),求橢圓C的方程;
          (2)在(1)的條件下,直線l過焦點(diǎn)F2,與拋物線M交于A、B兩點(diǎn),若弦長|AB|等于△PF1F2的周長,求直線l的方程;
          (3)由拋物線弧y2=4mx(0≤x≤
          2m
          3
          )
          和橢圓弧
          x2
          4m2
          +
          y2
          3m2
          =1
          (
          2m
          3
          ≤x≤2m)

          (m>0)合成的曲線叫“拋橢圓”,是否存在以原點(diǎn)O為直角頂點(diǎn),另兩個(gè)頂點(diǎn)A1、A2落在“拋橢圓”上的等腰直角三角形OA1A2,若存在,求出兩直角邊所在直線的斜率;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (本題滿分18分)第一題滿分4分,第二題滿分6分,第三題滿分8分.

          已知橢圓的長軸長是焦距的兩倍,其左、右焦點(diǎn)依次為、,拋物線的準(zhǔn)線與軸交于,橢圓與拋物線的一個(gè)交點(diǎn)為.

          (1)當(dāng)時(shí),求橢圓的方程;

          (2)在(1)的條件下,直線過焦點(diǎn),與拋物線交于兩點(diǎn),若弦長等于的周長,求直線的方程;

          (3)由拋物線弧和橢圓弧

          )合成的曲線叫“拋橢圓”,是否存在以原點(diǎn)為直角頂點(diǎn),另兩個(gè)頂點(diǎn)落在“拋橢圓”上的等腰直角三角形,若存在,求出兩直角邊所在直線的斜率;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (本題滿分18分)第一題滿分4分,第二題滿分6分,第三題滿分8分.

          已知橢圓的長軸長是焦距的兩倍,其左、右焦點(diǎn)依次為,拋物線的準(zhǔn)線與軸交于,橢圓與拋物線的一個(gè)交點(diǎn)為.

          (1)當(dāng)時(shí),求橢圓的方程;

          (2)在(1)的條件下,直線過焦點(diǎn),與拋物線交于兩點(diǎn),若弦長等于的周長,求直線的方程;

          (3)由拋物線弧和橢圓弧

          )合成的曲線叫“拋橢圓”,是否存在以原點(diǎn)為直角頂點(diǎn),另兩個(gè)頂點(diǎn)落在“拋橢圓”上的等腰直角三角形,若存在,求出兩直角邊所在直線的斜率;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011年上海市浦東新區(qū)高考數(shù)學(xué)三模試卷(理科)(解析版) 題型:解答題

          已知橢圓C的長軸長是焦距的兩倍,其左、右焦點(diǎn)依次為F1、F2,拋物線M:y2=4mx(m>0)的準(zhǔn)線與x軸交于F1,橢圓C與拋物線M的一個(gè)交點(diǎn)為P.
          (1)當(dāng)m=1時(shí),求橢圓C的方程;
          (2)在(1)的條件下,直線l過焦點(diǎn)F2,與拋物線M交于A、B兩點(diǎn),若弦長|AB|等于△PF1F2的周長,求直線l的方程;
          (3)由拋物線弧y2=4mx和橢圓弧
          (m>0)合成的曲線叫“拋橢圓”,是否存在以原點(diǎn)O為直角頂點(diǎn),另兩個(gè)頂點(diǎn)A1、A2落在“拋橢圓”上的等腰直角三角形OA1A2,若存在,求出兩直角邊所在直線的斜率;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011年上海市浦東新區(qū)高考數(shù)學(xué)三模試卷(理科)(解析版) 題型:解答題

          已知橢圓C的長軸長是焦距的兩倍,其左、右焦點(diǎn)依次為F1、F2,拋物線M:y2=4mx(m>0)的準(zhǔn)線與x軸交于F1,橢圓C與拋物線M的一個(gè)交點(diǎn)為P.
          (1)當(dāng)m=1時(shí),求橢圓C的方程;
          (2)在(1)的條件下,直線l過焦點(diǎn)F2,與拋物線M交于A、B兩點(diǎn),若弦長|AB|等于△PF1F2的周長,求直線l的方程;
          (3)由拋物線弧y2=4mx和橢圓弧
          (m>0)合成的曲線叫“拋橢圓”,是否存在以原點(diǎn)O為直角頂點(diǎn),另兩個(gè)頂點(diǎn)A1、A2落在“拋橢圓”上的等腰直角三角形OA1A2,若存在,求出兩直角邊所在直線的斜率;若不存在,說明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案