日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù),,,且

          (1)若函數(shù)處取得極值,試求函數(shù)的解析式及單調(diào)區(qū)間;

          (2)設(shè),的導(dǎo)函數(shù),若存在,使成立,求的取值范圍.

          【答案】(1)函數(shù)的解析式為,定義域?yàn)?/span>

          單調(diào)增區(qū)間為,,,單調(diào)減區(qū)間為;(2).

          【解析】

          (1)求導(dǎo)后根據(jù)處取得極值可得,再求解即可得,求導(dǎo)分析導(dǎo)函數(shù)的零點(diǎn)以及正負(fù)區(qū)間,進(jìn)而得到原函數(shù)單調(diào)區(qū)間即可.

          (2)根據(jù)題意可得存在的根,再化簡(jiǎn)可得,再求導(dǎo)分析的值域,進(jìn)而求得的取值范圍即可.

          解;(1)由題意,

          ,

          由函數(shù)處取得極值,得,即,解得,

          則函數(shù)的解析式為,定義域?yàn)?/span>,

          ,

          對(duì)恒成立,

          則有,解得,且,即

          同理令可解得;

          綜上,函數(shù)的單調(diào)增區(qū)間為,,,單調(diào)減區(qū)間為.

          (2)由題意,

          ,

          ,

          由條件存在,使成立得,對(duì)成立,

          對(duì)成立,

          化簡(jiǎn)得,令,則問題轉(zhuǎn)化為求在區(qū)間上的值域,

          求導(dǎo)得,

          ,為二次函數(shù),圖象開口向上,△,則,又,

          ,在區(qū)間上單調(diào)遞增,值域?yàn)?/span>,

          所以的取值范圍是.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在四棱錐中,底面為正方形,.

          (1)證明:面;

          (2)若與底面所成的角為, ,求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù),且.以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

          1)求曲線的普通方程和曲線的直角坐標(biāo)方程;

          2)已知點(diǎn)P的極坐標(biāo)為,Q為曲線上的動(dòng)點(diǎn),求的中點(diǎn)M到曲線的距離的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          1)若處的切線方程為,求實(shí)數(shù)的值;

          2)證明:當(dāng)時(shí),上有兩個(gè)極值點(diǎn);

          3)設(shè),若上是單調(diào)減函數(shù)(為自然對(duì)數(shù)的底數(shù)),求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知雙曲線 的兩條漸近線與拋物線的準(zhǔn)線分別交于,兩點(diǎn).若雙曲線的離心率為的面積為為坐標(biāo)原點(diǎn),則拋物線的焦點(diǎn)坐標(biāo)為 ( )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)為自然對(duì)數(shù)的底數(shù)).

          當(dāng)時(shí),求曲線在點(diǎn)處的切線與坐標(biāo)軸圍成的三角形的面積;

          在區(qū)間上恒成立求實(shí)數(shù)的取值范圍

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,并在兩種坐標(biāo)系中取相同的長(zhǎng)度單位,已知直線l的參數(shù)方程為t為參數(shù)),圓C的極坐標(biāo)方程為

          1)求直線l和圓C的直角坐標(biāo)方程;

          2)若點(diǎn)在圓C上,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某民航部門統(tǒng)計(jì)的2019年春運(yùn)期間12個(gè)城市售出的往返機(jī)票的平均價(jià)格以及相比上年同期變化幅度的數(shù)據(jù)統(tǒng)計(jì)圖表如圖所示,根據(jù)圖表,下面敘述正確的是( )

          A. 同去年相比,深圳的變化幅度最小且廈門的平均價(jià)格有所上升

          B. 天津的平均價(jià)格同去年相比漲幅最大且2019年北京的平均價(jià)格最高

          C. 2019年平均價(jià)格從高到低居于前三位的城市為北京、深圳、廣州

          D. 同去年相比,平均價(jià)格的漲幅從高到低居于前三位的城市為天津、西安、南京

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,在四棱錐中,底面為矩形,平面平面

          1)證明:平面;

          2)若,為棱的中點(diǎn),,,求二面角的正弦值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案