日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】設(shè)函數(shù)

          1)若是函數(shù)的一個(gè)極值點(diǎn),求函數(shù)的單調(diào)區(qū)間;

          2)當(dāng)時(shí),對(duì)于任意的為自然對(duì)數(shù)的底數(shù))都有成立,求實(shí)數(shù)的取值范圍.

          【答案】1)見(jiàn)解析;(2

          【解析】

          1)先對(duì)函數(shù)求導(dǎo),然后結(jié)合極值存在條件可求關(guān)系,代入后即可求解單調(diào)區(qū)間;

          2)先分離出,轉(zhuǎn)化為求解相應(yīng)函數(shù)的最值或范圍,結(jié)合導(dǎo)數(shù)可求.

          解:(1)定義域,,

          由題意可得,(1)

          所以,

          由函數(shù)存在極值可知,,

          時(shí),由可得,函數(shù)單調(diào)遞增,由可得,函數(shù)上單調(diào)遞減.

          時(shí),由可得,,函數(shù)在上單調(diào)遞減,由可得,單調(diào)遞增;

          當(dāng)時(shí),由可得,,由可得,

          故函數(shù)的單調(diào)遞增區(qū)間,0,),單調(diào)遞減區(qū)間;

          綜上所述:當(dāng)恒成立,不符合題意;

          當(dāng)時(shí),上遞增,在上遞減,在上遞增;

          當(dāng)時(shí),上遞減,在上遞增.

          2時(shí),可得,,

          ,則,

          ,

          上單調(diào)遞減,

          所以1,

          所以上單調(diào)遞減, ,即,

          所以上單調(diào)遞減,e,

          的范圍

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)(其中 為自然對(duì)數(shù)的底數(shù))

          (Ⅰ)若函數(shù)無(wú)極值,求實(shí)數(shù)的取值范圍;

          (Ⅱ)當(dāng)時(shí),證明:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某班制定了數(shù)學(xué)學(xué)習(xí)方案:星期一和星期日分別解決個(gè)數(shù)學(xué)問(wèn)題,且從星期二開(kāi)始,每天所解決問(wèn)題的個(gè)數(shù)與前一天相比,要么“多一個(gè)”要么“持平”要么“少一個(gè)”,則在一周中每天所解決問(wèn)題個(gè)數(shù)的不同方案共有( )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】隨著5G商用進(jìn)程的不斷加快,手機(jī)廠商之間圍繞5G用戶(hù)的爭(zhēng)奪越來(lái)越激烈,5G手機(jī)也頻頻降低身價(jià)飛人尋常百姓家.某科技公司為了給自己新推出的5G手機(jī)定價(jià),隨機(jī)抽取了100人進(jìn)行調(diào)查,對(duì)其在下一次更換5G手機(jī)時(shí),能接受的價(jià)格(單位:元)進(jìn)行了統(tǒng)計(jì),得到結(jié)果如下表,已知這100個(gè)人能接受的價(jià)格都在之間,并且能接受的價(jià)格的平均值為2350元(同一組的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替).

          分組

          手機(jī)價(jià)格X(元)

          頻數(shù)

          10

          x

          y

          20

          20

          1)現(xiàn)用分層抽樣的方法從第一、二、三組中隨機(jī)抽取6人,將該樣本看成一個(gè)總體,從中隨機(jī)抽取2人,求其中恰有1人能接受的價(jià)格不低于2000元的概率;

          2)若人們對(duì)5G手機(jī)能接受的價(jià)格X近似服從正態(tài)分布,其中為樣本平均數(shù)為樣本方差,求

          附:.若,則

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某公司生產(chǎn)一種產(chǎn)品,從流水線(xiàn)上隨機(jī)抽取100件產(chǎn)品,統(tǒng)計(jì)其質(zhì)量指數(shù)并繪制頻率分布直方圖(如圖1):

          產(chǎn)品的質(zhì)量指數(shù)在的為三等品,在的為二等品,在的為一等品,該產(chǎn)品的三、二、一等品的銷(xiāo)售利潤(rùn)分別為每件1.5,3.5,5.5(單位:元),以這100件產(chǎn)品的質(zhì)量指數(shù)位于各區(qū)間的頻率代替產(chǎn)品的質(zhì)量指數(shù)位于該區(qū)間的概率.

          (1)求每件產(chǎn)品的平均銷(xiāo)售利潤(rùn);

          (2)該公司為了解年?duì)I銷(xiāo)費(fèi)用(單位:萬(wàn)元)對(duì)年銷(xiāo)售量(單位:萬(wàn)件)的影響,對(duì)近5年的年?duì)I銷(xiāo)費(fèi)用和年銷(xiāo)售量 數(shù)據(jù)做了初步處理,得到的散點(diǎn)圖(如圖2)及一些統(tǒng)計(jì)量的值.

          16.30

          24.87

          0.41

          1.64

          表中,,,

          根據(jù)散點(diǎn)圖判斷,可以作為年銷(xiāo)售量(萬(wàn)件)關(guān)于年?duì)I銷(xiāo)費(fèi)用(萬(wàn)元)的回歸方程.

          (。┙關(guān)于的回歸方程;

          (ⅱ)用所求的回歸方程估計(jì)該公司應(yīng)投入多少營(yíng)銷(xiāo)費(fèi),才能使得該產(chǎn)品一年的收益達(dá)到最大?(收益=銷(xiāo)售利潤(rùn)-營(yíng)銷(xiāo)費(fèi)用,取

          參考公式:對(duì)于一組數(shù)據(jù):,,,其回歸直線(xiàn)的斜率和截距的最小乘估計(jì)分別為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知拋物線(xiàn)的焦點(diǎn)為,準(zhǔn)線(xiàn)為,過(guò)點(diǎn)的直線(xiàn)交拋物線(xiàn)于,兩點(diǎn),點(diǎn)在準(zhǔn)線(xiàn)上的投影為,點(diǎn)是拋物線(xiàn)上一點(diǎn),且滿(mǎn)足.

          1)若點(diǎn)坐標(biāo)是,求線(xiàn)段中點(diǎn)的坐標(biāo);

          2)求面積的最小值及此時(shí)直線(xiàn)的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖所示,在邊長(zhǎng)為60 cm的正方形鐵片的四角上切去相等的正方形,再把它沿虛線(xiàn)折起,做成一個(gè)無(wú)蓋的長(zhǎng)方體箱子,箱底的邊長(zhǎng)是多少時(shí),箱子的容積最大?最大容積是多少?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在三棱錐DABC中,ADDC,ACCB,AB=2AD=2DC=2,且平面ABD平面BCD,E為AC的中點(diǎn).

          (I)證明:ADBC;

          (II)求直線(xiàn) DE 與平面ABD所成的角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系(),點(diǎn)為曲線(xiàn)上的動(dòng)點(diǎn),點(diǎn)在線(xiàn)段的延長(zhǎng)線(xiàn)上,且滿(mǎn)足,點(diǎn)的軌跡為

          (Ⅰ)求的極坐標(biāo)方程;

          (Ⅱ)設(shè)點(diǎn)的極坐標(biāo)為,求面積的最小值。

          查看答案和解析>>

          同步練習(xí)冊(cè)答案