日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知兩個正數(shù)a,b,可按規(guī)則c=ab+a+b擴充為一個新數(shù)c,在a,b,c三個數(shù)中取兩個較大的數(shù),按上述規(guī)則擴充得到一個新數(shù),依次下去,將每擴充一次得到一個新數(shù)稱為一次操作.
          (1)若a=1,b=3,按上述規(guī)則操作三次,擴充所得的數(shù)是
          255
          255

          (2)若p>q>0,經(jīng)過6次操作后擴充所得的數(shù)為(q+1)m(p+1)n-1(m,n為正整數(shù)),則m,n的值分別為
          8,13
          8,13
          分析:(1)a=1,b=3,按規(guī)則操作三次,第一次:c=7;第二次c=31;第三次c=255;
          (2)p>q>0 第一次得:c1=pq+p+q=(q+1)(p+1)-1;第二次得:c2=(p+1)2(q+1)-1;所得新數(shù)大于任意舊數(shù),故經(jīng)過6次擴充,所得數(shù)為:(q+1)8(p+1)13-1,故可得結(jié)論
          解答:解:(1)a=1,b=3,按規(guī)則操作三次,
          第一次:c=ab+a+b=1×3+1+3=7
          第二次,7>3>1所以有:c=3×7+3+7=31
          第三次:31>7>3所以有:c=7×31+7+31=255
          2、p>q>0 第一次得:c1=pq+p+q=(q+1)(p+1)-1
          因為c>p>q,所以第二次得:c2=(c1+1)(p+1)-1=(pq+p+q)p+p+(pq+p+q)=(p+1)2(q+1)-1
          所得新數(shù)大于任意舊數(shù),所以第三次可得c3=(c2+1)(c1+1)-1=(p+1)3(q+1)2-1
          第四次可得:c4=(c3+1)(c2-1)-1=(p+1)5(q+1)3-1
          故經(jīng)過6次擴充,所得數(shù)為:(q+1)8(p+1)13-1
          ∴m=8,n=13
          故答案為:255;8,13
          點評:本題考查新定義,考查學(xué)生的計算能力,考查學(xué)生分析解決問題的能力
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知兩個正數(shù)a、b.則
          a+b
          2
          a2+b2
          2
          .三個正數(shù)a、b、c,則
          a+b+c
          3
          a2+b2+c2
          3
          ;…類比寫出n個正數(shù)的關(guān)系式并加以證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知兩個正數(shù)a,b滿足a+b=ab,則a+b的最小值為( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知兩個正數(shù)a,b(a>b)的等差中項為5,等比中項為4,則橢圓
          x2
          a2
          +
          y2
          b2
          =1
          的離心率e等于(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知兩個正數(shù)a、b的等差中項為4,則a、b的等比中項的最大值為( 。

          查看答案和解析>>

          同步練習(xí)冊答案