日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=ln x-
          b
          x
          (b為實數(shù))
          (1)若b=-1,求函數(shù)f(x)的極值;
          (2)若函數(shù)M(x)滿足M(x)≥N(x)恒成立,則稱M(x)是N(x)的一個“上界函數(shù)”.
          ①如果函數(shù)f(x)為g(x)=-Inx的一個“上界函數(shù)”,求b的取值范圍;
          ②若b=0,函數(shù)F(x)的圖象與函數(shù)f(x)的圖象關于直線y=x對稱,求證:當x∈(-2,+∞)時,函數(shù)F(x)是函數(shù)y=f(
          x
          2
          +1)+
          x
          2
          +1
          的一個“上界函數(shù)”.
          分析:(1)求導函數(shù)后,令其為零,解出x,再驗證是否為極值即可;
          (2)①由新定義知,f(x)≥g(x)在其定義域上恒成立,即ln x-
          b
          x
          ≥-lnx,亦即2ln x-
          b
          x
          ≥0在(0,+∞)上恒成立,即有(2ln x-
          b
          x
          極小值≥0,解出b即可;
          ②若b=0,則函數(shù)f(x)=ln x,由題意知,函數(shù)F(x)=ex,要證明當x∈(-2,+∞)時,函數(shù)F(x)是函數(shù)y=f(
          x
          2
          +1)+
          x
          2
          +1
          的一個“上界函數(shù)”.只需證ex≥f(
          x
          2
          +1)+
          x
          2
          +1
          在x∈(-2,+∞)時,恒成立即可.
          解答:解:(1)由于b=-1,則函數(shù)f(x)=ln x+
          1
          x
          ,得到f′(x)=
          1
          x
          -
          1
          x2
          =
          x-1
          x2

          令f′(x)=0,則x=1,
          由于當0<x<1時,f′(x)<0;當x>1時,f′(x)>0.
          故函數(shù)f(x)在x=1處取得極小值,且極小值為1;
          (2)①由“上界函數(shù)”定義知,函數(shù)f(x)為g(x)=-lnx的一個“上界函數(shù)”?f(x)≥g(x)在其定義域上恒成立,
          即ln x-
          b
          x
          ≥-lnx,亦即2ln x-
          b
          x
          ≥0在(0,+∞)上恒成立,
          令H(x)=2ln x-
          b
          x
          ,則H′(x)=
          2
          x
          +
          b
          x2
          =
          2x+b
          x2
          ,
          當b≥0時,H′(x)>0,則H(x)=2ln x-
          b
          x
          在(0,+∞)上遞增,顯然不滿足(2ln x-
          b
          x
          極小值≥0;
          當b<0時,令H′(x)>0,得到x>-
          b
          2

          則H(x)=2ln x-
          b
          x
          在(0,-
          b
          2
          )上遞減,在(-
          b
          2
          ,+∞)上遞增,
          故(2ln x-
          b
          x
          極小值=2ln(-
          b
          2
          )-
          b
          -
          b
          2
          =2ln(-
          b
          2
          )+2≥0,解得b≤-
          2
          e

          故若函數(shù)f(x)為g(x)=-lnx的一個“上界函數(shù)”,b的取值范圍為b≤-
          2
          e
          ;
          ②證明:由于b=0,則f(x)=ln x,又由函數(shù)F(x)的圖象與函數(shù)f(x)的圖象關于直線y=x對稱,則函數(shù)F(x)=ex,
          當x∈(-2,+∞)時,令G(x)=F(x)-[f(
          x
          2
          +1)+
          x
          2
          +1]=ex-ln(
          x
          2
          +1)-
          x
          2
          -1
          ,則G′(x)=ex-
          1
          x+2
          -
          1
          2

          若令G′(x)=0,解得x=0,故G(x)在(-2,0)上單調遞減,(0,+∞)上單調遞增,
          [G(x)]最小值=G(0)=e0-ln1-1=0
          故當x∈(-2,+∞)時,G(x)≥0恒成立,
          即當x∈(-2,+∞)時,函數(shù)F(x)是函數(shù)y=f(
          x
          2
          +1)+
          x
          2
          +1
          的一個“上界函數(shù)”.
          點評:此題考查學生會利用導數(shù)研究函數(shù)的極值,掌握導數(shù)在最大值、最小值問題中的應用,考查了分類討論和數(shù)形結合的數(shù)學思想,是一道中檔題.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)=2x-2+ae-x(a∈R)
          (1)若曲線y=f(x)在點(1,f(1))處的切線平行于x軸,求a的值;
          (2)當a=1時,若直線l:y=kx-2與曲線y=f(x)在(-∞,0)上有公共點,求k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)=x2+2|lnx-1|.
          (1)求函數(shù)y=f(x)的最小值;
          (2)證明:對任意x∈[1,+∞),lnx≥
          2(x-1)
          x+1
          恒成立;
          (3)對于函數(shù)f(x)圖象上的不同兩點A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)f(x)圖象上存在點M(x0,y0)(其中x0∈(x1,x2))使得點M處的切線l∥AB,則稱直線AB存在“伴侶切線”.特別地,當x0=
          x1+x2
          2
          時,又稱直線AB存在“中值伴侶切線”.試問:當x≥e時,對于函數(shù)f(x)圖象上不同兩點A、B,直線AB是否存在“中值伴侶切線”?證明你的結論.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線x+3y-1=0垂直,若數(shù)列{
          1
          f(n)
          }的前n項和為Sn,則S2012的值為( 。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)=xlnx
          (Ⅰ)求函數(shù)f(x)的極值點;
          (Ⅱ)若直線l過點(0,-1),并且與曲線y=f(x)相切,求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)=
          3
          x
          a
          +
          3
          (a-1)
          x
          ,a≠0且a≠1.
          (1)試就實數(shù)a的不同取值,寫出該函數(shù)的單調增區(qū)間;
          (2)已知當x>0時,函數(shù)在(0,
          6
          )上單調遞減,在(
          6
          ,+∞)上單調遞增,求a的值并寫出函數(shù)的解析式;
          (3)記(2)中的函數(shù)圖象為曲線C,試問是否存在經過原點的直線l,使得l為曲線C的對稱軸?若存在,求出直線l的方程;若不存在,請說明理由.

          查看答案和解析>>

          同步練習冊答案