日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知橢圓的中心在原點,焦點在軸上,離心率為,它的一個頂點恰好是拋物線的焦點.

          (1)求橢圓的方程;

          (2)直線與橢圓交于兩點,點位于第一象限,是橢圓上位于直線兩側的動點.

          (i)若直線的斜率為,求四邊形面積的最大值;

          (ii)當點運動時,滿足,問直線的斜率是否為定值,請說明理由.

          【答案】I;()(i;(ii的斜率為定值.

          【解析】

          試題(I)設橢圓的方程為,由條件利用橢圓的性質求得的值,可得橢圓的方程.

          II)(i)設的方程為,代入橢圓的方程化簡,由0,求得的范圍,再利用利用韋達定理可得以及的值.再求得的坐標,根據(jù)四邊形的面積,計算求得結果.

          ii)當時,C、的斜率之和等于零,的方程為,把它代入橢圓的方程化簡求得.再把直線的方程橢圓的方程化簡求得的值,可得以及的值,從而求得的斜率的值.

          試題解析:設橢圓的方程為,由題意可得它的一個頂點恰好是拋物線的焦點,

          再根據(jù)離心率,求得,橢圓C的方程為

          )(i)設,的方程為,代入橢圓的方程化簡可得,由,求得

          利用韋達定理可得

          中,令求得,四邊形的面積

          ,

          故當時,四邊形的面積取得最小值為4

          ii)當時,、的斜率之和等于零,設的斜率為,則的斜率為,

          的方程為,把它代入橢圓的方程化簡可得

          ,所以

          同理可得直線的方程為

          ,

          的斜率

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】《九章算術》中“竹九節(jié)”問題:現(xiàn)有一根9節(jié)的竹子,自上而下各節(jié)的容積成等差數(shù)列,上面4節(jié)的容積共3升,下面3節(jié)的容積共4升,則第6節(jié)的容積為( )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知點A(﹣2,0),B(0,1)在橢圓C: (a>b>0)上.
          (Ⅰ)求橢圓C的方程;
          (Ⅱ)P是線段AB上的點,直線y= x+m(m≥0)交橢圓C于M、N兩點,若△MNP是斜邊長為 的直角三角形,求直線MN的方程.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】在銳角△ABC中,a、b、c分別是角A、B、C的對邊,若A滿足2cos2A+cos(2A+ )=﹣
          (Ⅰ)求A的值;
          (Ⅱ)若c=3,△ABC的面積為3 ,求a的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】定義在R上的函數(shù)y=f(x)為減函數(shù),且函數(shù)y=f(x﹣1)的圖象關于點(1,0)對稱,若f(x2﹣2x)+f(2b﹣b2)≤0,且0≤x≤2,則x﹣b的取值范圍是(
          A.[﹣2,0]
          B.[﹣2,2]
          C.[0,2]
          D.[0,4]

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】學校某文具商店經(jīng)營某種文具,商店每銷售一件該文具可獲利3元,若供大于求則削價處理,每處理一件文具虧損1元;若供不應求,則可以從外部調劑供應,此時每件文具僅獲利2元.為了了解市場需求的情況,經(jīng)銷商統(tǒng)計了去年一年(52周)的銷售情況.

          銷售量(件)

          10

          11

          12

          13

          14

          15

          16

          周數(shù)

          2

          4

          8

          13

          13

          8

          4

          以去年每周的銷售量的頻率為今年每周市場需求量的概率.
          (1)要使進貨量不超過市場需求量的概率大于0.5,問進貨量的最大值是多少?
          (2)如果今年的周進貨量為14,寫出周利潤Y的分布列;
          (3)如果以周利潤的期望值為考慮問題的依據(jù),今年的周進貨量定為多少合適?

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知橢圓,離心率為,并過點.

          (1)求橢圓方程;

          (2)若直線與橢圓相交于兩點(不是左右頂點),且以為直徑的圓過橢圓的右頂點。求證:直線過定點,并求出該定點的坐標.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】矩形的兩條對角線相交于點, 邊所在直線的方程為,點邊所在直線上.

          )求邊所在直線的方程;

          )求矩形外接圓的方程;

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】定義為n個正數(shù)的“均倒數(shù)”已知正項數(shù)列{an}的前n項的“均倒數(shù)”為

          (1)求數(shù)列{an}的通項公式

          (2)設數(shù)列的前n項和為,若4<對一切恒成立試求實數(shù)m的取值范圍

          (3)令,問:是否存在正整數(shù)k使得對一切恒成立,如存在求出k值,否則說明理由

          查看答案和解析>>

          同步練習冊答案