日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】學(xué)校某文具商店經(jīng)營某種文具,商店每銷售一件該文具可獲利3元,若供大于求則削價處理,每處理一件文具虧損1元;若供不應(yīng)求,則可以從外部調(diào)劑供應(yīng),此時每件文具僅獲利2元.為了了解市場需求的情況,經(jīng)銷商統(tǒng)計了去年一年(52周)的銷售情況.

          銷售量(件)

          10

          11

          12

          13

          14

          15

          16

          周數(shù)

          2

          4

          8

          13

          13

          8

          4

          以去年每周的銷售量的頻率為今年每周市場需求量的概率.
          (1)要使進(jìn)貨量不超過市場需求量的概率大于0.5,問進(jìn)貨量的最大值是多少?
          (2)如果今年的周進(jìn)貨量為14,寫出周利潤Y的分布列;
          (3)如果以周利潤的期望值為考慮問題的依據(jù),今年的周進(jìn)貨量定為多少合適?

          【答案】
          (1)解:若進(jìn)貨量定為13件,則“進(jìn)貨量不超過市場需求量”是指“銷售兩不小于13件”,相應(yīng)有13+13+8+4=38周.“進(jìn)貨量不超過市場需求量”的概率P= >0.5;同理:若進(jìn)貨量定為14件,則“進(jìn)貨量不超過市場需求量”的概率 <0.5;∴要使進(jìn)貨量不超過市場需求量的概率大于0.5,進(jìn)貨量的最大值是13.
          (2)解:今年的周進(jìn)貨量為14,設(shè)“平均今年周利潤”Y;若售出10件,則利潤y=10×3+4×(﹣1)=26.售出11件,則利潤y=11×3+3×(﹣1)=30.售出12件,則利潤y=12×3+2×(﹣1)=34.售出13件,則利潤y=13×3+1×(﹣1)=38.售出14件,則利潤y=14×3=42.售出15件,則利潤y=14×3+1×2=44.售出16件,則利潤y=14×3+2×2=46.

          Y的分布列為:

          Y

          26

          30

          34

          38

          42

          44

          46

          P

          E(Y)=26× +30× +34× +38× +42× +44× +46× ≈32.08.


          (3)解:以周利潤的期望值為考慮問題的依據(jù),今年的周進(jìn)貨量定為11件或12件合適.
          【解析】(I)若進(jìn)貨量定為13件,相應(yīng)有13+13+8+4=38周.可得“進(jìn)貨量不超過市場需求量”的概率P= >0.5;同理:若進(jìn)貨量定為14件,則“進(jìn)貨量不超過市場需求量”的概率 <0.5,即可得出.(II)今年的周進(jìn)貨量為14,設(shè)“平均今年周利潤”Y;若售出x件,x≤14時,則利潤y=x×3+(14﹣x)×(﹣1).x≥15時,則利潤y=14×3+(x﹣14)×2.即可得出Y的分布列.(III)以周利潤的期望值為考慮問題的依據(jù),今年的周進(jìn)貨量定為11件或12件合適.
          【考點精析】解答此題的關(guān)鍵在于理解離散型隨機(jī)變量及其分布列的相關(guān)知識,掌握在射擊、產(chǎn)品檢驗等例子中,對于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機(jī)變量X 的概率分布,簡稱分布列.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列{an}的前n項和為Sn(n∈N*),且滿足an+2Sn=2n+2.
          (1)求數(shù)列{an}的通項公式;
          (2)求證:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知圓心在軸非負(fù)半軸上,半徑為2的圓C與直線相切.

          (1)求圓C的方程;

          (2)設(shè)不過原點O的直線l與圓O:x2+y2=4相交于不同的兩點A,B.①求△OAB的面積的最大值;②在圓C上,是否存在點M(m,n),使得直線l的方程為mx+ny=1,且此時△OAB的面積恰好取到①中的最大值?若存在,求出點M的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列{an}滿足:a1= ,an=an12+an1(n≥2且n∈N).
          (Ⅰ)求a2 , a3;并證明:2 ≤an 3 ;
          (Ⅱ)設(shè)數(shù)列{an2}的前n項和為An , 數(shù)列{ }的前n項和為Bn , 證明: = an+1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的中心在原點,焦點在軸上,離心率為,它的一個頂點恰好是拋物線的焦點.

          (1)求橢圓的方程;

          (2)直線與橢圓交于兩點,點位于第一象限,是橢圓上位于直線兩側(cè)的動點.

          (i)若直線的斜率為,求四邊形面積的最大值;

          (ii)當(dāng)點運動時,滿足,問直線的斜率是否為定值,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=(ax+1)ex﹣(a+1)x﹣1.
          (1)求y=f(x)在(0,f(0))處的切線方程;
          (2)若x>0時,不等式f(x)>0恒成立,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】[選修4-5:不等式選講]
          設(shè)函數(shù)f(x)=|x﹣4|,g(x)=|2x+1|.
          (1)解不等式f(x)<g(x);
          (2)若2f(x)+g(x)>ax對任意的實數(shù)x恒成立,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知長方體ABCD-A1B1C1D1中,底面ABCD為正方形,AB=4,AA1=2,點E1在棱C1D1上,且D1E1=3。

          (I)在棱CD上確定一點E,使得直線EE1∥平面D1DB,并寫出證明過程;

          (II)求證:平面A1ACC1⊥平面D1DB;

          (III)若動點F在正方形ABCD內(nèi),且AF=2,請說明點F的軌跡,試求E1F長度的最小值。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)f(x)定義在區(qū)間(0,+∞)上,且f(1)=0,導(dǎo)函數(shù)f′(x)=,函數(shù)g(x)=f(x)+f′(x).

          (1)求函數(shù)g(x)的最小值;

          (2)是否存在x0>0,使得不等式|g(x)-g(x0)|<對任意x>0恒成立?若存在,請求出x0的取值范圍;若不存在,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案