日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在△ABC中,若asinA+bsinB<csinC,則△ABC的形狀是(  )三角形.
          分析:已知不等式利用正弦定理化簡,再利用余弦定理表示出cosC,將得出的關(guān)系式代入判斷得到cosC小于0,得出C為鈍角,即可確定出三角形形狀.
          解答:解:已知不等式asinA+bsinB<csinC利用正弦定理化簡得:a2+b2<c2,
          即a2+b2-c2<0,
          由余弦定理得:cosC=
          a2+b2-c2
          2ab
          <0,
          ∴C為鈍角,
          則△ABC為鈍角三角形.
          故選C
          點(diǎn)評:此題考查了正弦、余弦定理,以及特殊角的三角函數(shù)值,熟練掌握定理是解本題的關(guān)鍵.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)(1)如圖,平行四邊形ABCD中,M、N分別為DC、BC的中點(diǎn),已知
          AM
          =
          c
          、
          AN
          =
          d
          ,試用
          c
          、
          d
          表示
          AB
          AD

          (2)在△ABC中,若
          AB
          =
          a
          ,
          AC
          =
          b
          若P,Q,S為線段BC的四等分點(diǎn),試證:
          AP
          +
          AQ
          +
          AS
          =
          3
          2
          (
          a
          +
          b
          )
          ;

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在三棱錐S-ABC中,側(cè)面SAC與底面ABC垂直,E,O分別是SC、AC的中點(diǎn),SA=SC=
          2
          ,BC=
          1
          2
          AC,∠ASC=∠ACB=90°.
          (1)求證:OE∥平面SAB;
          (2)若點(diǎn)F在線段BC上,問:無論F在BC的何處,是否都有OE⊥SF?請證明你的結(jié)論;
          (3)求二面角B-AS-C的平面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年北京市海淀區(qū)八一中學(xué)高三(上)周練數(shù)學(xué)試卷(11)(理科)(解析版) 題型:解答題

          如圖,在三棱錐S-ABC中,側(cè)面SAC與底面ABC垂直,E,O分別是SC、AC的中點(diǎn),SA=SC=,BC=AC,∠ASC=∠ACB=90°.
          (1)求證:OE∥平面SAB;
          (2)若點(diǎn)F在線段BC上,問:無論F在BC的何處,是否都有OE⊥SF?請證明你的結(jié)論;
          (3)求二面角B-AS-C的平面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年北京市東城區(qū)示范校高三(上)12月聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

          如圖,在三棱錐S-ABC中,側(cè)面SAC與底面ABC垂直,E,O分別是SC、AC的中點(diǎn),SA=SC=,BC=AC,∠ASC=∠ACB=90°.
          (1)求證:OE∥平面SAB;
          (2)若點(diǎn)F在線段BC上,問:無論F在BC的何處,是否都有OE⊥SF?請證明你的結(jié)論;
          (3)求二面角B-AS-C的平面角的余弦值.

          查看答案和解析>>

          同步練習(xí)冊答案