日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=lg(1+2x),F(xiàn)(x)=f(x)-f(-x).
          (1)求函數(shù)F(x)的定義域;
          (2)當(dāng)0≤x<
          12
          時(shí),總有F(x)≥m成立,求m的取值范圍.
          分析:(1)由題意可知:1+2x>0且1-2x>0,可求函數(shù)F(x)的定義域
          (2)由題意可知F(x)=lg
          1+2x
          1-2x
          ,由F(x)≥m成立,則只要m≤F(x)min,結(jié)合對(duì)數(shù)函數(shù)的性質(zhì)可求
          解答:解:(1)由題意可知:F(x)=lg(1+2x)-lg(1-2x),
          ∴1+2x>0且1-2x>0,
          -
          1
          2
          <x<
          1
          2
          ,
          所以函數(shù)F(x)的定義域是(-
          1
          2
          ,
          1
          2
          )
          ;
          (2)由題意可知F(x)=lg
          1+2x
          1-2x
          ,
          設(shè)u(x)=
          1+2x
          1-2x
          ,則有 u(x)=-1+
          2
          1-2x
          ;
          當(dāng)0≤x<
          1
          2
          時(shí)有:0≤2x<1,即-1<-2x≤0,
          則有0<1-2x≤1,則
          1
          1-2x
          ≥1

          故而
          2
          1-2x
          ≥2
          ,-1+
          2
          1-2x
          ≥1
          ;
          ∴u(x)min=1,F(xiàn)(x)min=lg1=0;
          又由題意可得:m≤F(x)min,
          ∴m≤0.
          點(diǎn)評(píng):本題主要考查了對(duì)數(shù)函數(shù)定義域的求解,函數(shù)恒成立與函數(shù)最值的相互轉(zhuǎn)化,復(fù)合函數(shù)的值域的求解,屬于綜合試題
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=2x-2+ae-x(a∈R)
          (1)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸,求a的值;
          (2)當(dāng)a=1時(shí),若直線l:y=kx-2與曲線y=f(x)在(-∞,0)上有公共點(diǎn),求k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=x2+2|lnx-1|.
          (1)求函數(shù)y=f(x)的最小值;
          (2)證明:對(duì)任意x∈[1,+∞),lnx≥
          2(x-1)
          x+1
          恒成立;
          (3)對(duì)于函數(shù)f(x)圖象上的不同兩點(diǎn)A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)f(x)圖象上存在點(diǎn)M(x0,y0)(其中x0∈(x1,x2))使得點(diǎn)M處的切線l∥AB,則稱直線AB存在“伴侶切線”.特別地,當(dāng)x0=
          x1+x2
          2
          時(shí),又稱直線AB存在“中值伴侶切線”.試問:當(dāng)x≥e時(shí),對(duì)于函數(shù)f(x)圖象上不同兩點(diǎn)A、B,直線AB是否存在“中值伴侶切線”?證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=x2-bx的圖象在點(diǎn)A(1,f(1))處的切線l與直線x+3y-1=0垂直,若數(shù)列{
          1
          f(n)
          }的前n項(xiàng)和為Sn,則S2012的值為( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=xlnx
          (Ⅰ)求函數(shù)f(x)的極值點(diǎn);
          (Ⅱ)若直線l過點(diǎn)(0,-1),并且與曲線y=f(x)相切,求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          3
          x
          a
          +
          3
          (a-1)
          x
          ,a≠0且a≠1.
          (1)試就實(shí)數(shù)a的不同取值,寫出該函數(shù)的單調(diào)增區(qū)間;
          (2)已知當(dāng)x>0時(shí),函數(shù)在(0,
          6
          )上單調(diào)遞減,在(
          6
          ,+∞)上單調(diào)遞增,求a的值并寫出函數(shù)的解析式;
          (3)記(2)中的函數(shù)圖象為曲線C,試問是否存在經(jīng)過原點(diǎn)的直線l,使得l為曲線C的對(duì)稱軸?若存在,求出直線l的方程;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案