日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=x•ex+ax2+bx在x=0和x=1時都取得極值.
          (Ⅰ)求a和b的值;
          (Ⅱ)若存在實數(shù)x∈[1,2],使不等式f(x)≤
          12
          x2+(t-1)x
          成立,求實數(shù)t的取值范圍.
          分析:(Ⅰ)求導(dǎo)f′(x),由f(x)在x=0和x=1時取得極值,得f′(x)=0,f′(1)=0,聯(lián)立方程解出即可,注意檢驗;
          (Ⅱ)由(Ⅰ)知不等式f(x)≤
          1
          2
          x2+(t-1)x
          成立可化為ex-ex-t≤0成立,令g(x)=ex-ex-t,問題轉(zhuǎn)化為g(x)最小≤0,利用導(dǎo)數(shù)即可求得g(x)在[1,2]上的最小值;
          解答:解:(Ⅰ)f′(x)=ex+xex+2ax+b,
          因為f(x)在x=0和x=1時取得極值,
          所以有
          f′(0)=0
          f′(1)=0
          ,即
          1+b=0
          e+e+2a+b=0
          ,解得
          b=-1
          a=
          1
          2
          -e
          ,經(jīng)檢驗符號條件,
          故a=
          1
          2
          -e,b=-1.
          (Ⅱ)由(Ⅰ)知f(x)=xex+
          1
          2
          x2-ex2-x
          ,
          即存在實數(shù)x∈[1,2],使xex-ex2-tx≤0成立,即ex-ex-t≤0,
          令g(x)=ex-ex-t,則g′(x)=ex-e≥0恒成立,
          所以g(x)在[1,2]上單調(diào)遞增,∴g(x)最小=g(1)=e-e-t≤0,
          ∴t∈[0,+∞)
          點評:本題考查函數(shù)在某點取得極值的條件及函數(shù)恒成立問題,本題(Ⅱ)問屬于“能成立”問題,往往轉(zhuǎn)化為函數(shù)最值問題解決.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
          π
          2
          )的部分圖象如圖所示,則f(x)的解析式是( 。
          A、f(x)=2sin(πx+
          π
          6
          )(x∈R)
          B、f(x)=2sin(2πx+
          π
          6
          )(x∈R)
          C、f(x)=2sin(πx+
          π
          3
          )(x∈R)
          D、f(x)=2sin(2πx+
          π
          3
          )(x∈R)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•深圳一模)已知函數(shù)f(x)=
          1
          3
          x3+bx2+cx+d
          ,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
          (1)求f(x);
          (2)設(shè)g(x)=x
          f′(x)
           , m>0
          ,求函數(shù)g(x)在[0,m]上的最大值;
          (3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•上海模擬)已知函數(shù)f(x)=(
          x
          a
          -1)2+(
          b
          x
          -1)2,x∈(0,+∞)
          ,其中0<a<b.
          (1)當a=1,b=2時,求f(x)的最小值;
          (2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
          (3)設(shè)k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
          求證:f1(x)+f2(x)>
          4c2
          k(k+c)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

          已知函數(shù)f(x)=(
          x
          a
          -1)2+(
          b
          x
          -1)2,x∈(0,+∞)
          ,其中0<a<b.
          (1)當a=1,b=2時,求f(x)的最小值;
          (2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
          (3)設(shè)k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
          求證:f1(x)+f2(x)>
          4c2
          k(k+c)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

          已知函數(shù)f(x)=
          1
          3
          x3+bx2+cx+d
          ,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
          (1)求f(x);
          (2)設(shè)g(x)=x
          f′(x)
           , m>0
          ,求函數(shù)g(x)在[0,m]上的最大值;
          (3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案