日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 函數(shù)y=
          |x|+x
          +
          1
          2
          -2x  
          的定義域是
           
          分析:根據(jù)二次根式的性質(zhì)和指數(shù)函數(shù)的意義,被開方數(shù)大于等于0,函數(shù)y=2x是單調(diào)增函數(shù),就可以求解.
          解答:解:由題意得:
          |x|+x
          ≥0
          1
          2
          -2x
          ≥0

          x∈R
          x≤1
          ?x≤1.
          故填:(-∞,-1].
          點(diǎn)評(píng):本題主要考查自變量的取值范圍.函數(shù)自變量的范圍一般從三個(gè)方面考慮:
          (1)當(dāng)函數(shù)表達(dá)式是整式時(shí),自變量可取全體實(shí)數(shù);
          (2)當(dāng)函數(shù)表達(dá)式是分式時(shí),考慮分式的分母不能為0;
          (3)當(dāng)函數(shù)表達(dá)式是二次根式時(shí),被開方數(shù)非負(fù).
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
          (1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為
          2
          ,求a的值;
          (2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
          (3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
          2
          2
          ,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          對(duì)于函數(shù)y=f(x)(x∈R),給出下列命題:
          (1)在同一直角坐標(biāo)系中,函數(shù)y=f(1-x)與y=f(x-1)的圖象關(guān)于直線x=0對(duì)稱;
          (2)若f(1-x)=f(x-1),則函數(shù)y=f(x)的圖象關(guān)于直線x=1對(duì)稱;
          (3)若f(1+x)=f(x-1),則函數(shù)y=f(x)是周期函數(shù);
          (4)若f(1-x)=-f(x-1),則函數(shù)y=f(x)的圖象關(guān)于點(diǎn)(0,0)對(duì)稱.
          其中所有正確命題的序號(hào)是
          (3)(4)
          (3)(4)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          給出下列四個(gè)命題:
          ①函數(shù)y=|x|與函數(shù)y=(
          x
          )2
          表示同一個(gè)函數(shù);
          ②已知函數(shù)f(x+1)=x2,則f(e)=e2-1
          ③已知函數(shù)f(x)=4x2+kx+8在區(qū)間[5,20]上具有單調(diào)性,則實(shí)數(shù)k的取值范圍是(-∞,40]∪[160,+∞)
          ④已知f(x)、g(x)是定義在R上的兩個(gè)函數(shù),對(duì)任意x、y∈R滿足關(guān)系式f(x+y)+f(x-y)=2f(x)•g(y),且f(0)=0,但x≠0時(shí)f(x)•g(x)≠0則函數(shù)f(x)、g(x)都是奇函數(shù).
          其中正確命題的個(gè)數(shù)是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•浦東新區(qū)三模)已知函數(shù)y=f(x),x∈D,y∈A;g(x)=x2-(4
          7
          tanθ)x+1,
          (1)當(dāng)f(x)=sin(x+φ)為偶函數(shù)時(shí),求φ的值.
          (2)當(dāng)f(x)=sin(2x+
          π
          6
          )+
          3
          sin(2x+
          π
          3
          )時(shí),g(x)在A上是單調(diào)遞減函數(shù),求θ的取值范圍.
          (3)當(dāng)f(x)=m•sin(ωx+φ1)時(shí),(其中m∈R且m≠0,ω>0),函數(shù)f(x)的圖象關(guān)于點(diǎn)(
          π
          2
          ,0)對(duì)稱,又關(guān)于直線x=π成軸對(duì)稱,試探討ω應(yīng)該滿足的條件.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:徐州模擬 題型:解答題

          設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
          (1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為2
          2
          ,求a的值;
          (2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
          (3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
          2
          2
          ,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案