日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 給出下列四個(gè)命題:
          ①函數(shù)y=|x|與函數(shù)y=(
          x
          )2
          表示同一個(gè)函數(shù);
          ②已知函數(shù)f(x+1)=x2,則f(e)=e2-1
          ③已知函數(shù)f(x)=4x2+kx+8在區(qū)間[5,20]上具有單調(diào)性,則實(shí)數(shù)k的取值范圍是(-∞,40]∪[160,+∞)
          ④已知f(x)、g(x)是定義在R上的兩個(gè)函數(shù),對任意x、y∈R滿足關(guān)系式f(x+y)+f(x-y)=2f(x)•g(y),且f(0)=0,但x≠0時(shí)f(x)•g(x)≠0則函數(shù)f(x)、g(x)都是奇函數(shù).
          其中正確命題的個(gè)數(shù)是( 。
          分析:①由函數(shù)y=|x|和函數(shù)y=(
          x
          )2
          的定義域不同,知函數(shù)y=|x|與函數(shù)y=(
          x
          )2
          不是同一個(gè)函數(shù);
          ②由函數(shù)f(x+1)=x2,設(shè)x+1=e,則x=e-1,知f(e)=(e-1)2;
          ③由函數(shù)f(x)=4x2+kx+8的對稱軸為x=-
          k
          8
          ,在區(qū)間[5,20]上具有單調(diào)性,能推導(dǎo)出k≥40,或k≤160;
          ④分別判斷f(x),g(x)的奇偶性,即可判斷④的正誤.
          解答:解:①∵函數(shù)y=|x|的定義域是R,
          函數(shù)y=(
          x
          )2
          的定義域是{x|x≥0},
          ∴函數(shù)y=|x|與函數(shù)y=(
          x
          )2
          不是同一個(gè)函數(shù),故①錯(cuò)誤;
          ②∵函數(shù)f(x+1)=x2,
          設(shè)x+1=e,則x=e-1,
          ∴f(e)=(e-1)2,故②錯(cuò)誤;
          ③∵函數(shù)f(x)=4x2+kx+8的對稱軸為x=-
          k
          8
          ,
          在區(qū)間[5,20]上具有單調(diào)性,
          ∴-
          k
          8
          ≤5,或-
          k
          8
          ≥20
          ,
          解得k≥40,或k≤160,故③錯(cuò)誤;
          ④令x=0,有f(-y)+f(y)=0,f(-y)=-f(y)函數(shù)f(x)是奇函數(shù),
          ∵x≠0時(shí),f(x)•g(x)≠0,
          ∴g(-y)=
          f(x+y)+f(x-y)
          2f(x)
          =g(y),
          ∴函數(shù)g(x)是偶函數(shù),故④錯(cuò)誤.
          故選D.
          點(diǎn)評:考查抽象函數(shù)及其應(yīng)用,解決抽象函數(shù)的問題一般應(yīng)用賦值法,難點(diǎn)在于綜合考察函數(shù)的單調(diào)性,奇偶性,零點(diǎn)與最值,考察點(diǎn)跨度大,難度大,屬于難題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          12、已知a、b是兩條不重合的直線,α、β、γ是三個(gè)兩兩不重合的平面,給出下列四個(gè)命題:
          ①若a⊥α,a⊥β,則α∥β;
          ②若α⊥γ,β⊥γ,則α∥β;
          ③若α∥β,a?α,b?β,則a∥b;
          ④若α∥β,α∩γ=a,β∩γ=b,則a∥b.
          其中正確命題的序號(hào)有
          ①④

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          給出下列四個(gè)命題:
          ①函數(shù)y=
          1
          x
          的單調(diào)減區(qū)間是(-∞,0)∪(0,+∞);
          ②函數(shù)y=x2-4x+6,當(dāng)x∈[1,4]時(shí),函數(shù)的值域?yàn)閇3,6];
          ③函數(shù)y=3(x-1)2的圖象可由y=3x2的圖象向右平移1個(gè)單位得到;
          ④若函數(shù)f(x)的定義域?yàn)閇0,2],則函數(shù)f(2x)的定義域?yàn)閇0,1];
          ⑤若A={s|s=x2+1},B={y|x=
          y-1
          }
          ,則A∩B=A.
          其中正確命題的序號(hào)是
          ③④⑤
          ③④⑤
          .(填上所有正確命題的序號(hào))

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          將邊長為2,銳角為60°的菱形ABCD沿較短對角線BD折成二面角A-BD-C,點(diǎn)E,F(xiàn)分別為AC,BD的中點(diǎn),給出下列四個(gè)命題:
          ①EF∥AB;②直線EF是異面直線AC與BD的公垂線;③當(dāng)二面角A-BD-C是直二面角時(shí),AC與BD間的距離為
          6
          2
          ;④AC垂直于截面BDE.
          其中正確的是
          ②③④
          ②③④
          (將正確命題的序號(hào)全填上).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          給出下列四個(gè)命題,其中正確的命題的個(gè)數(shù)為( 。
          ①命題“?x0∈R,2x0≤0”的否定是“?x∈R,2x>0”;
          log2sin
          π
          12
          +log2cos
          π
          12
          =-2;
          ③函數(shù)y=tan
          x
          2
          的對稱中心為(kπ,0),k∈Z;
          ④[cos(3-2x)]=-2sin(3-2x)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          給出下列四個(gè)命題:
          ①函數(shù)y=ax(a>0且a≠1)與函數(shù)y=logaax(a>0且a≠1)的定義域相同;
          ②函數(shù)y=x3與y=3x的值域相同;
          ③函數(shù)y=
          1
          2
          +
          1
          2x-1
          y=
          (1+2x)2
          x•2x
          都是奇函數(shù);
          ④函數(shù)y=(x-1)2與y=2x-1在區(qū)間[0,+∞)上都是增函數(shù),其中正確命題的序號(hào)是( 。

          查看答案和解析>>