試題分析:(1)先由正弦定理求出AB和BC的長,然后由向量的數(shù)量積求出函數(shù)f(x)的解析式并結(jié)合三角形的內(nèi)角和求出定義域;(2)

,故可先求出函數(shù)

的值域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023749383541.png" style="vertical-align:middle;" />,而函數(shù)

的值域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023749133582.png" style="vertical-align:middle;" />,故有
試題解析:(1)由正弦定理知:

,

,


,又

,

,

定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023749180704.png" style="vertical-align:middle;" /> 6分
(2)

,假設(shè)存在正實(shí)數(shù)

符合題意,

,故

,又

,從而函數(shù)

的值域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023749383541.png" style="vertical-align:middle;" />,令

12分